Bestimmen der wertemenge?

Gefragt von: Marlies Sauter-Paul  |  Letzte Aktualisierung: 30. April 2022
sternezahl: 4.9/5 (29 sternebewertungen)

Die Wertemenge einer quadratischen Funktion lässt sich leicht bestimmen, wenn die Funktion in der Scheitelform f ( x ) = a ⋅ ( x − d ) ² + e f(x)=a\cdot(x-d)²+e f(x)=a⋅(x−d)²+e gegeben ist.

Was ist die Wertemenge von f?

Die Wertemenge gibt an, was alles für y, bzw. f(x), rauskommen kann, wenn man jede Zahl aus der Definitionsmenge in die Funktion (für x) eingesetzt hat. Wird x mit einer geraden Zahl potenziert, können nur positive Zahlen (und die 0) rauskommen (z.B. hoch 2). ...

Was ist der Wertebereich?

Der Wertebereich zeigt dir, welche möglichen y-Werte es für eine Funktion gibt. Bei linearen Funktionen kommen alle reellen Zahlen als Wertebereich in Frage. Der Definitionsbereich grenzt die x-Werte ein, die eingesetzt werden können.

Was sind Werte Mathe?

Unter Wertemenge (auch Wertebereich genannt)einer Funktion versteht man die Menge der möglichen Funktionswerte. Anders gesagt: Die Funktionswerte die man bekommt, wenn man in die Funktion alle aus dem Definitionsbereich [mehr dazu] einsetzt. Kurz: "Was rauskommen kann".

Was ist eine Definitionsmenge einfach erklärt?

Die Definitionsmenge sind alle Zahlen, die eingesetzt werden können, die die Aufgabe lösbar machen. Er umfasst also alle Werte, die x annehmen darf, der Definitionsbereich regelt, welche Werte nicht eingesetzt werden dürfen.

Wertebereich bei Funktionen | Mathe by Daniel Jung

32 verwandte Fragen gefunden

Was sind die funktionswerte?

Bei einer Funktion gehört zu jedem x-Wert ein y-Wert. Mit dem Funktionsterm kannst du die y-Werte berechnen. Du setzt statt der Variablen jeweils eine Zahl ein und rechnest den Term dann aus. Die y-Werte heißen auch Funktionswerte.

Wie gibt man den Wertebereich an?

Im Gegensatz zu den linearen Funktionen nehmen quadratische Funktionen aber grundsätzlich nicht jeden -Wert an. Für den Wertebereich einer quadratischen Funktion gilt: W f = [ y s ; ∞ [ , wenn das Vorzeichen von positiv ist. W f = ] − ∞ ; y s ] , wenn das Vorzeichen von negativ ist.

Was ist der Unterschied zwischen Wertebereich und definitionsbereich?

Definitionsbereich einer Funktion ist die Menge aller x-Werte, für die die Funktion definiert ist. ... Wertebereich einer Funktion ist die Menge aller y-Werte der Funktion.

Was sagt der definitionsbereich aus?

Den Definitionsbereich einer Funktion oder eines Terms bestimmt man, indem man untersucht, ob einzelne Teile des (Funktions)terms für bestimmte Zahlenbereiche nicht definiert sind. Zahlen aus diesen Bereichen muss man aus der Definitionsmenge herausnehmen.

Wie bekommt man die Definitionsmenge heraus?

Die Definitionsmenge ist die Menge der reellen Zahlen.
  1. D = R ∖ { − 1 } D ist die Menge der reellen Zahlen ohne .
  2. D = { 1 , 5 , 7 , 8 } D ist die Menge der Zahlen , , und .
  3. D = { x | − 5 < x < 3 } D ist die Menge aller für die gilt: ist größer als und kleiner als .
  4. Beispiel 6. D = [ − 2 , 1 ] ...
  5. Beispiel 7. ...
  6. Beispiel 8.

Wie kommt man auf die Definitionsmenge?

Vorgehensweise zum Bestimmen der Definitionsmenge
  1. Für jeden der vorkommenden Brüche.
  2. schreibt man den Nenner heraus.
  3. setzt ihn gleich 0.
  4. und löst nach der Variablen auf.
  5. Alle Zahlen, die man dabei als Lösungen erhält, muss man bei der Definitionsmenge ausschließen:
  6. Man schreibt die Grundmenge hin (meist Q oder R),
  7. dann ∖

Was ist die Punktprobe und wie führe ich sie durch?

Eine Punktprobe wird durchgeführt, indem man die Koordinaten des Punktes in die Gleichung der Punktmenge einsetzt. ... entsteht eine wahre Aussage, so liegt der Punkt in der Punktmenge. Entsteht eine falsche Aussage, so liegt der Punkt nicht in der Punktmenge.

Ist Definitionsbereich dasselbe wie Definitionsmenge?

Der Definitionsbereich - auch Definitionsmenge genannt - gibt an, welche Zahlen man in eine Funktion einsetzen darf bzw. welche man nicht einsetzen darf. Dies ist insbesondere wichtig, wenn es um Brüche, Wurzeln oder Logarithmen geht. In Mathematik-Aufgaben wird meistens nach dem maximalen Definitionsbereich gefragt.

Wann ist der Definitionsbereich eingeschränkt?

Wir beginnen mit dem Definitionsbereich der Funktion. ... Für ganzrationale Funktionen wird die Menge der reellen Zahlen nicht weiter eingeschränkt. Bei gebrochen rationalen Funktionen hingegen gehören nur die reellen Zahlen mit Ausnahme der Nullstellen der Nennerfunktion zum maximalen Definitionsbereich.

Was versteht man unter einer Funktion?

Eine Funktion ist eine Beziehung zwischen zwei Mengen. ... Diese Mengen heißen Definitionsbereich (Definitionsmenge) und Wertebereich (Wertemenge). Der Definitionsbereich wird durch die x-Werte (Argumente) gebildet, der Wertebereich durch die zugeordneten y-Werte. Diese y-Werte nennt man auch Funktionswerte oder Ordinaten.

Wie gibt man Definitionsbereich und Wertebereich an?

Beispiel 1:
  1. Bestimme den Definitions- und Wertebereich der Funktion f(x)=2x.
  2. Die Variable x steht nicht im Nenner, also ist der Definitionsbereich ganz ℚ.
  3. D=ℚ
  4. Du siehst am Graphen, dass dieser alle y-Werte annimmt. Das heißt, du erhältst als Ergebnis alle Zahlen aus ℚ. Der Wertebereich ist also ganz ℚ.
  5. W=ℚ

Was gehört alles zu einer Kurvendiskussion?

Unter Kurvendiskussion versteht man in der Mathematik die Untersuchung des Graphen einer Funktion auf dessen geometrische Eigenschaften, wie zum Beispiel Schnittpunkte mit den Koordinatenachsen, Hoch- und Tiefpunkte, Wendepunkte, gegebenenfalls Sattel- und Flachpunkte, Asymptoten, Verhalten im Unendlichen usw.

Was sind Argumente und funktionswerte?

Das Argument ist in der Mathematik ein Wert, der durch die Verrechnung mit einer Funktion den sogenannten Funktionswert bildet. In der Regel wird das Argument einer Funktion allgemein als x angegeben. Das Argument einer Funktion kann meistens alle reelle Zahlen einnehmen. ... Auch bei einer Abbildung gibt es diesen Wert.

Was ist der Funktionswert einer sinusfunktion?

Bei der Sinusfunktion gibt es unendlich viele Hochpunkte. Der größte Funktionswert ist 1. Es gibt unendlich viele Tiefpunkte, der kleinste Funktionswert ist -1. (π2+2π⋅k ∣ 1) für k∈ℤ.

Auf welcher Achse ist der Funktionswert?

Das versteht man unter einem Funktionswert

Die Funktion definiert die Beziehung zwischen der einen Größe, die auf der x-Achse abgebildet wird, und der anderen, die anhand der y-Achse dargestellt wird. Das bedeutet, dass einem Wert auf der x-Achse ein Wert auf der y-Achse entspricht.

Wie lautet die Definitionsmenge der sinusfunktion?

Sinus- und Kosinusfunktion haben ganz R als Definitionsbereich. Man sieht, dass man alle x ∈ R x\in\mathbb R x∈R ausschließen muss, für die c o s ( x ) = 0 \mathrm{cos}(x)=0 cos(x)=0 wird. ...

Was ist die Definitionsmenge eines Wurzelterms?

Die Definitionsmenge gibt an, für welche x-Werte eines Funktionsterms es dazugehörige y-Werte gibt. ... Nicht nur bei Brüchen ist die Definitionsmenge begrenzt, auch die eines Wurzelterms enthält nicht immer den gesamten Wertebereich der reellen Zahlen. Unter der Wurzel dürfen nämlich keine negativen Zahlen stehen.

Wie findet man heraus ob ein Punkt auf der Funktion liegt?

Die Punktprobe durchführen
  1. Setze die Koordinaten des Punktes P (1∣2) in die Funktionsgleichung f(x)=2x ein.
  2. Prüfe, ob die Aussage wahr ist. Die Aussage 2=2 ⋅ 1 ist wahr. Also gehört der Punkt P(1∣2) zum Graphen der Funktion f(x)=2x. Einen Punkt bezeichnet man auch als Wertepaar. Für f(x) kann man auch y schreiben.

Wie findet man heraus ob ein Punkt auf dem Graphen liegt?

Ein Punkt P1(x1; y1) liegt genau dann auf dem Graphen der Funktion y=f (x), wenn y1=f (x1)ist, d. h., wenn die Koordinaten x1, y1 von P1 die Gleichung y=f (x) erfüllen.

Wie findet man heraus ob die Punkte auf der Geraden liegen?

Um zu überprüfen, ob ein Punkt auf einer Geraden liegt, setzt du dessen x-Koordinate in die Gleichung der Geraden ein. Stimmt dieser errechnete y-Wert mit der gegebenen y‑Koordinate überein, liegt dieser Punkt auf der Geraden.