Differenzierbarkeit bestimmen?

Gefragt von: Hans-Josef Preuß  |  Letzte Aktualisierung: 2. Juni 2021
sternezahl: 4.9/5 (1 sternebewertungen)

Differenzierbarkeit
  1. Eine Funktion f heißt differenzierbar an einer Stelle x 0 \sf x_0 x0 ihres Definitionsbereichs, falls der Differentialquotient existiert:
  2. Wir nennen dann diesen Grenzwert Ableitung an der Stelle x 0 \sf x_0 x0.

Was ist differenzierbar?

Als Differenzierbarkeit bezeichnet man in der Mathematik die Eigenschaft einer Funktion, sich lokal um einen Punkt in eindeutiger Weise linear approximieren zu lassen.

Wann ist eine Abbildung differenzierbar?

Die Abbildung f W X ! W heißt differenzierbar, wenn sie in jedem Punkt x0 2 X differenzierbar ist.

Wann ist eine Funktion nicht differenzierbar?

Lexikon der Mathematik Nicht-Differenzierbarkeit. liegt bei einer Funktion f:D→R an einer inneren Stelle a∈D⊂R vor, wenn der Differenzenquotient Qf (a, x) für D∍x→a in R nicht konvergiert. ... Ist dabei f außer an der Stelle a differenzierbar, so hat f an der Stelle a einen ‚Knick'.

Wann ist eine Funktion total differenzierbar?

Die totale Differenzierbarkeit einer Funktion in einem Punkt bedeutet, dass diese sich dort lokal durch eine lineare Abbildung approximieren (annähern) lässt, während die partielle Differenzierbarkeit (in alle Richtungen) nur die lokale Approximierbarkeit durch Geraden in allen Koordinatenachsenrichtungen, nicht jedoch ...

Differenzierbarkeit an einer Stelle, Grenzwert existiert,Differentialquotient | Mathe by Daniel Jung

40 verwandte Fragen gefunden

Was ist eine totale Funktion?

Man unterscheidet zwischen totale Funktionen und partielle Funktionen. Sei eine Funktion gegeben mit f: M → N. Dann ist die Funktion total, wenn für jedes x ∈ M ein Bild von x, also f(x) ∈ N existiert. Die Funktion ist hingegen dann partiell, wenn sie für mindestens ein x ∈ M undefiniert ist.

Wann existiert eine partielle Ableitung?

In der Differentialrechnung ist eine partielle Ableitung die Ableitung einer Funktion mit mehreren Argumenten nach einem dieser Argumente (in Richtung dieser Koordinatenachse). Die Werte der übrigen Argumente werden also konstant gehalten.

Wann ist eine Funktion nicht definiert?

Gebrochenrationale Funktionen

Die -Werte, für die der Nenner gleich Null wird, müssen wir aus dem Definitionsbereich ausschließen. Dadurch entstehen sog. Definitionslücken – das sind Stellen, an denen die Funktion nicht definiert ist.

Sind Unstetige Funktion differenzierbar?

Differenzierbar bedeutet, dass an der Stelle x0 einer Funktion, die Steigung ermittelt werden kann. Im Punkt P0 (x0 | f(x0). muss also eine eindeutige Tangente existieren. ... Ist eine Funktion an irgendeiner Stelle unstetig, kann sie dort auch nicht differenziert werden.

Wie zeigt man dass eine Funktion stetig ist?

Es gibt eine einfache Methode, um herauszufinden ob eine Funktion stetig ist: Zeichne den Graph der Funktion. Wenn dir das in einem Zug gelingt (also ohne den Stift abzusetzen), dann ist die Funktion stetig.

Ist X X differenzierbar?

in diesem Fall wäre es doch die Verkettung von der Exponentialfunktion und Der Logarithmusfunktion auf R+. Von diesen Wissen wir, dass sie auf R+ differenzierbar sind, damit ist auch nach Kettenregel die verkettung x x x^x xx differenzierbar auf der Domäne.

In welchen Punkten ist die Funktion differenzierbar?

Differenzierbarkeit einer Funktion in x0 bedeutet, dass der Graph dieser Funktion in x0 eine nicht zur y-Achse parallele Tangente besitzt. Definition: Es sei I ein offenes Intervall und f: Ι→ℝ. Die Funktion f heißt in I differenzierbar, wenn sie in jedem Punkt von I differenzierbar ist.

Wie oft ist die Funktion differenzierbar?

Eine glatte Funktion ist eine mathematische Funktion, die unendlich oft differenzierbar (insbesondere stetig) ist.

Sind alle polynome differenzierbar?

Als erstes ergibt sich: 18.4 Differenzierbarkeit rationaler Funktionen (i) Jedes Polynom ist differenzierbar.

Was versteht man unter dem Grenzwert?

In der Mathematik bezeichnet der Limes oder Grenzwert einer Funktion an einer bestimmten Stelle denjenigen Wert, dem sich die Funktion in der Umgebung der betrachteten Stelle annähert.

Ist eine lineare Funktion differenzierbar?

Differenzierbare Funktionen sind genau diejenigen Funktionen, die lokal durch genau eine lineare Funktion approximierbar sind. Differenzierbare Funktionen sind damit genau diejenigen Funktionen, die sich lokal durch lineare Funktionen approximieren lassen (siehe Abbildung).

Wann ist LN nicht definiert?

Der Logarithmus ist nicht definiert, wenn der Numerus den Wert 0 hat, da keine Potenz zum Wert 0 führt (ohne Berücksichtigung des Sonderfalls Null hoch Null):

Woher weiß man die Definitionsmenge?

Den Definitionsbereich einer Funktion oder eines Terms bestimmt man, indem man untersucht, ob einzelne Teile des (Funktions)terms für bestimmte Zahlenbereiche nicht definiert sind. Zahlen aus diesen Bereichen muss man aus der Definitionsmenge herausnehmen. ... Wurzeln (sind nur für Zahlen größer gleich Null definiert)

Was versteht man unter Definitionsmenge?

Die Definitionsmenge oder auch der Definitionsbereich beschreibt den Bereich, in dem eine Funktion definiert ist.