Für was ist der sinussatz?

Gefragt von: Anatoli Stadler  |  Letzte Aktualisierung: 7. Dezember 2021
sternezahl: 4.3/5 (5 sternebewertungen)

Der Sinussatz verbindet gegenüberliegende Größen (Seiten und Winkel) im allgemeinen Dreieck. Sind zwei einander gegenüberliegende Größen gegeben, so kann zu einer dritten die gegenüberliegende Größe berechnet werden.

Wann rechnet man mit dem Sinussatz?

Wenn du also die Länge einer Seite durch den Sinus des gegenüberliegenden Winkels teilst, kommt immer das selbe Ergebnis heraus. Wenn in deinem Dreieck also mindestens drei Größen gegeben sind und ein „Seiten-Winkel-Paar“ dabei ist, kannst du den Sinussatz verwenden, um die anderen Größen zu berechnen.

Warum gilt der Sinussatz für alle Dreiecke?

Der Sinussatz und der Kosinussatz sind zwei Erweiterungen der trigonometrischen Funktionen, die an sich ja nur in rechtwinkligen Dreiecken definiert sind, auf beliebige Dreiecke. Der "Trick" dabei ist in beiden Fällen, das Dreieck durch eine Höhe in zwei rechtwinklige Teildreiecke zu "teilen".

Wann nehme ich den Sinussatz und wann den Kosinussatz?

Der Vorteil des Kosinussatzes ist, dass die Werte immer eindeutig sind. Man erhält für die Winkelberechnung einen Wert von 0° bis 180° . Beim Sinussatz hingegen erhält man stets einen Winkel von 0° bis 90° und muss das Ergebnis rechnerisch bzw. mit der gegebenen Zeichnung überprüfen.

Wann nimmt man den Kosinussatz?

Kosinussatz. Anders als beim Sinussatz, drückt der Kosinussatz eine Beziehung zwischen den drei Seiten und einem Winkel im Dreieck aus. Grundüberlegung hier ist wieder die Zerlegung in zwei rechtwinklige Dreiecke.

Sinussatz - Trigonometrie | Lehrerschmidt - einfach erklärt!

35 verwandte Fragen gefunden

Für was braucht man den Kosinussatz?

Kennst du mindestens drei Größen (Seitenlängen und/oder Winkel) in einem beliebigen Dreieck, dann kannst du mindestens eineweitere Größe berechnen, indem du den Sinussatz oder den Kosinussatz anwendest.

Kann man den Sinussatz auch in nicht rechtwinkligen Dreiecken anwenden?

Mit den Winkelfunktionen darfst du ausschließlich im rechtwinkligen Dreieck rechnen. Die Begründung dafür ist ganz einfach! Um zum Beispiel mit dem Sinus rechnen zu können, brauchst du eine Hypotenuse und ohne rechten Winkel gibt es in dem Dreieck keine Hypotenuse.

Was bezeichnet man als Sinussatz?

In der ebenen und sphärischen Trigonometrie stellt der Sinussatz eine Beziehung zwischen den Winkeln eines allgemeinen Dreiecks und den gegenüberliegenden Seiten her.

Kann man den Kosinussatz nur in rechtwinkligen Dreiecken benutzen?

Der Kosinussatz wird auch als trigonometrischer Pythagoras bezeichnet. Das rührt daher, daß mit ihm wie beim Satz des Pythagoras eine fehlende Dreieckseite berechnet werden kann, allerdings im Gegensatz zum Pythagoras, der ja nur für rechtwinklige Dreiecke gilt, in jedem beliebigen Dreieck.

Wann wende ich Sinus Cosinus an?

Der Sinus, der Cosinus und der Tangens werden angewendet, um Winkel und Seiten rechtwinkliger Dreiecke zu bestimmen.

Wie stelle ich den Sinussatz um?

Man kann den Sinussatz auch umstellen und wie folgt schreiben: s i n ( α ) ⋅ b = s i n ( β ) ⋅ a sin(\alpha) \cdot b = sin(\beta) \cdot a sin(α)⋅b= sin(β)⋅a.

Wann verwendet man sin?

Wann benutzt man und wann ? Wenn du zu einem gegebenen Winkel dessen Sinus wissen willst, dann verwende sin. Wenn aber der Sinus eines Winkels gegeben ist und du möchtest den zugehörigen Winkel haben, dann verwende .

Wie beweist man den Kosinussatz?

2.8.3.10 Kosinussatz

Beweis: Man zeichnet in das gegebene Dreieck ABC die Höhe über der Seite b mit dem Fußpunkt P ein. Aus der Definition von Sinus und Kosinus folgt dann unmittelbar, dass die Strecke PB durch csinα ⁡ und die Strecke AP durch ccosα ⁡ gegeben sind.

Wie berechne ich die Seitenlänge eines rechtwinkligen Dreiecks?

In rechtwinkligen Dreiecken gilt der Satz des Pythagoras: a²+b²=c². Das heißt also umgekehrt: c=Wurzel aus (a²+b²) oder b=Wurzel aus (c²-a²).

Kann man mit dem Sinussatz Winkel berechnen?

Mit dem Sinussatz kannst du aus den Längen zweier Seiten und dem der längeren Seite gegenüberliegenden Winkel (Ssw) den anderen gegenüberliegenden Winkel berechnen.

Was ist ein Sinus oder Cosinus oder Tangens?

Mit den Winkelfunktionen Sinus, Cosinus und Tangens kannst du nicht nur Winkel berechnen. Wenn du die Formeln sin cos tan umstellst, kannst du auch die Längen der Dreiecksseiten berechnen. Gegeben ist ein rechtwinkliges Dreieck mit der Hypotenuse c=4cm und dem Winkel α=30°.

Wie zeigt man dass ein Dreieck nicht rechtwinklig ist?

Es gilt a2 + b2≠ c2, also ist das Dreieck nicht rechtwinklig.

Kann man die Winkel eines Dreiecks beliebig wählen?

Durch das Verhältnis zwischen Katheten und Hypotenuse lassen sich auch die beiden spitzen Winkel des rechtwinkligen Dreiecks eindeutig bestimmen.

Wie berechnet man den Flächeninhalt von einem nicht rechtwinkligen Dreieck?

Flächenformel allgemeine Dreiecke

F=12⋅a⋅ha F = 1 2 ⋅ a ⋅ h a . Ist keine Höhe vorgegeben, so muss man die Zusammenhänge zwischen Seitenlängen und Innenwinkel kennen, um eine Höhe zu berechnen.

Wie funktioniert Kosinussatz?

Der Kosinussatz drückt eine Beziehung zwischen den drei Seiten und einem Winkel im Dreieck aus. Man kann aus zwei Seiten und dem von ihnen eingeschlossenen Winkel die dritte Seite berechnen oder aus drei Seiten einen Winkel. ... Der Kosinussatz drückt eine Beziehung zwischen den drei Seiten und einem Winkel im Dreieck aus.

Was gibt der Cosinus an?

Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete (Kathete, die dem Winkel gegenüberliegt) zur Länge der Hypotenuse (Seite gegenüber dem rechten Winkel). Der Kosinus ist das Verhältnis der Länge der Ankathete (das ist jene Kathete, die einen Schenkel des Winkels bildet) zur Länge der Hypotenuse.

Wann verwendet man tan?

Mit dem Tangens rechnest du, wenn du zwei der drei Größen, Winkel, Ankathete des Winkels und Gegenkathete des Winkels gegeben hast und die dritte Größe suchst. Das Vorgehen ist also ähnlich wie beim Sinus und Kosinus.

Kann man den Kosinussatz auch als Verallgemeinerung des Satzes von Pythagoras bezeichnen?

Der Satz des Pythagoras als Spezialfall des Kosinussatzes

Der Kosinussatz stellt daher eine Verallgemeinerung des Satzes von Pythagoras dar und wird auch erweiterter Satz des Pythagoras genannt.

Wie lautet der Höhensatz?

Der Höhensatz besagt, dass das Quadrat der Höhe h gleich dem Produkt der Abschnitte der Hypotenuse p und q ist.

Warum ist der Satz des Pythagoras ein Spezialfall des Kosinussatzes?

Ein Spezialfall des Kosinussatzes ist der Satz von Pythagoras :Ist der Kosinus von Alpha gleich Null, was bei einem rechten Winkel der Fall ist, so bleibt genau stehen: a²=b²+c², also der Satz von Pythagoras, nur mit anders benannten Seiten. (a ist diesmal die Seite gegenüber vom rechten Winkel Alpha.)