Funktionsgleichung bestimmen achsensymmetrie?
Gefragt von: Yusuf Schubert | Letzte Aktualisierung: 11. Juli 2021sternezahl: 5/5 (55 sternebewertungen)
Man wendet die Formel folgendermaßen an: Man setzt in die Funktion, die man überprüfen will, statt dem „x“ ein „(-x)“ ein (man berechnet also f(-x)). Danach vereinfacht man die Funktion. Wenn nun wieder die Funktion f(x) rauskommt, hat man eine Achsensymmetrie zur y-Achse und ist natürlich fertig.
Wann ist es Punktsymmetrisch und wann Achsensymmetrisch?
Um eine Funktion f(x) auf Symmetrie zu untersuchen, bildest du als erstes f(−x). Lässt sich dieser Ausdruck in f(x) umformen, ist der Graph achsensymmetrisch zur y-Achse. Lässt sich dieser Ausdruck dagegen in −f(x) umformen, ist der Graph punktsymmetrisch zum Ursprung.
Welche Graphen sind Achsensymmetrisch?
Der Graph von f ist achsensymmetrisch zur y-Achse, da alle Potenzen von x gerade sind; der Graph von g ist punktsymmetrisch zum Koordinatenursprung, da alle Potenzen von x ungerade sind. Demzufolge ist f eine gerade und g eine ungerade Funktion.
Wie wird die Symmetrie am Graphen untersucht?
Man kann eine Funktion auf ihr Symmetrieverhalten untersuchen, indem man einfach f(-x) ausrechnet und vergleicht, ob das Ergebnis mit f(x) oder -f(x) übereinstimmt. Dabei muss für x auch -x gelten. Eine Funktion kann natürlich nicht nur bezüglich der Y-Achse, bzw. des Ursprungs ein Symmetrieverhalten zeigen.
Wann ist es Achsensymmetrisch?
Eine Figur heißt achsensymmetrisch, wenn sie durch die senkrechte Achsenspiegelung an ihrer Symmetrieachse auf sich selbst abgebildet wird. Im Falle einer zweidimensionalen Figur ist Achsensymmetrie gleichbedeutend mit Spiegelsymmetrie.
Symmetrie, Funktionen, rechnerischer Ablauf, Punktsymmetrie, Achsensymmetrie | Mathe by Daniel Jung
34 verwandte Fragen gefunden
Was versteht man unter symmetrisch?
Mit dem geometrischen Begriff Symmetrie (altgriechisch συμμετρία symmetria Ebenmaß, Gleichmaß, aus σύν syn „zusammen“ und μέτρον metron, Maß) bezeichnet man die Eigenschaft, dass ein geometrisches Objekt durch Bewegungen auf sich selbst abgebildet werden kann, also unverändert erscheint.
Was gilt bei punktsymmetrie?
Punktsymmetrie zum Ursprung
Eine Funktion gilt als punktsymmetrisch, wenn sie durch eine Spiegelung am Symmetriepunkt auf sich selbst abgebildet wird.
Wie zeigt man Symmetrie?
Bei ganzrationalen Funktionen schaut man nur auf die Hochzahlen von „x“. Gibt es nur gerade Hochzahlen, ist f(x) symmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, ist f(x) symmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, ist f(x) nicht symmetrisch.
Wie erkennt man ob ein Graph symmetrisch ist?
Symmetrie zur allgemeinen Achse
Ein Graph kann auch zu einer allgemeinen Achse symmetrisch sein. Symmetrie zu einer allgemeinen Achse kann man dann nachweisen, wenn man die Gleichung der Achse gegeben hat oder sie aus einem Graphen ablesen kann. Die y-Achse ist der Spezialfall c = 0 \sf c=0 c=0.
Wie sieht ein Punktsymmetrischer Graph aus?
Der Graph einer Funktion ist punktsymmetrisch zum Ursprung genau dann, wenn für alle x gilt f(x)=-f-(-x). Der Graph einer Funktion ist achsensymmetrisch zur y-Achse genau dann, wenn für alle x gilt f(x)=f(-x).
Wann ist ein Graph symmetrisch zur Y-Achse?
Die Funktionskurve einer geraden Funktion ist spiegelsymmetrisch zur Y-Achse angeordnet. Dies bedeutet, dass jeder auf der Kurve gelegene Punkt durch Spiegelung an der Y-Achse wieder in einen Kurvenpunkt übergeht. Mathematisch findet man solch eine Funktion wenn gilt: f(-x) = f(x).
Wann ist ein Graph symmetrisch zum Ursprung?
Die Funktion f(x) = x3 soll auf eine Symmetrie zum Ursprung hin untersucht werden. Dazu ermitteln wir zunächst f(-x) und -f(x). Danach setzen wir f(-x) = -f(x). Ist die Gleichung korrekt, dann liegt eine Punktsymmetrie ( also eine Symmetrie zum Ursprung ) vor.
Wann ist eine polynomfunktion symmetrisch zur Y-Achse?
Achsensymmetrie (zur y-Achse) liegt vor, wenn die Bedingung f(-x) = f(x) erfüllt ist. Eine ganzrationale Funktion geraden Grades kann nie punktsymmetrisch sein, wie eine Ganzrationale Funktion ungeraden Grades nie achsensymmetrisch sein kann.
Kann eine Figur achsensymmetrisch und punktsymmetrisch sein?
Es gibt Figuren wie das Rechteck, die sowohl achsensymmetrisch als auch punktsymmetrisch sind. Für diese Figuren gibt es zwei aufeinander senkrecht stehende Symmetrieachsen.
Was bedeutet einfache Symmetrie?
Eine Figur heißt symmetrisch, wenn sie entweder durch Spiegelung an einer Achse oder durch Drehung um einen Punkt auf sich selbst abgebildet werden kann.
Was ist symmetrisch Grundschule?
„Symmetrie ist eine Eigenschaft von Figuren, bei der eine Figur oder ein räumliches Objekt durch eine Kongruenzabbildung auf sich selbst abgebildet werden kann. Diese Kongruenzabbildung ist von der Identität verschieden und wird auch als Deckabbildung bezeichnet.
Was gibt es für Symmetrien?
- Achsensymmetrie.
- Punktsymmetrie.
- Rotationssymmetrie.
- Asymmetrie.
Wann ist eine Funktion 3 Grades Punktsymmetrisch?
Grades (z.B: 3. Grades: f(x) = ax^3+bx^2+cx+d) punktsymmetrisch ist, bedeutet das, dass sie nur ungerade Exponenten hat und wenn sie achsensymmetrisch ist hat sie nur gerade Exponenten. ... Grades, punktsymmetrisch: f(x) = ax^3+bx+c Ist auch eine achsensymmetrische Funktion 3.
Was ist der Unterschied zwischen punktsymmetrie und drehsymmetrie?
Die Punktsymmetrie ist eine besondere Form der Drehsymmetrie. Eine Figur heißt punktsymmetrisch, wenn sie bei einer Drehung um 180° um ein Symmetriezentrum Z wieder in sich selbst übergeht. Die Verbindungsstrecken zwischen Ur- und Bildpunkten werden durch das Symmetriezentrum halbiert.