Graph ist punktsymmetrisch zum ursprung?

Gefragt von: Marko Richter  |  Letzte Aktualisierung: 16. April 2021
sternezahl: 4.7/5 (10 sternebewertungen)

Beispiel 1:
Die Funktion f(x) = x3 soll auf eine Symmetrie zum Ursprung hin untersucht werden. Dazu ermitteln wir zunächst f(-x) und -f(x). Danach setzen wir f(-x) = -f(x). Ist die Gleichung korrekt, dann liegt eine Punktsymmetrie ( also eine Symmetrie zum Ursprung ) vor.

Was ist punktsymmetrisch zum Ursprung?

Als punktsymmetrisch werden Körper bezeichnet, die aus zwei Hälften bestehen, wobei die eine Hälfte durch Drehung um 180° die andere Hälfte überdeckt. Punktsymmetrisch sind zum Beispiel die Buchstaben „N“ und „Z“ oder ein Parallelogramm.

Welche Eigenschaft muss für eine Funktion f gelten damit der Graph von f punktsymmetrisch zum Ursprung ist?

Wie wir sehen können ist f(-x) gleich -f(x). Dies bedeutet, dass die Funktion punktsymmetrisch zum Ursprung ist.

Wie erkenne ich eine punktsymmetrie?

Eine Figur heißt punktsymmetrisch, wenn sie durch die Spiegelung an einem Punkt, dem sogenannten Symmetriepunkt oder Symmetriezentrum, auf sich selbst abgebildet wird. Es handelt sich um eine Drehung der Figur um 180°.

Was ist der Ursprung in der Mathematik?

Der Ursprung ist der Koordinatennullpunkt eines Koordinatensystems, also der Punkt O(0|0) bzw. O(0|0|0). Der Großbuchstabe „O“ kommt daher, dass Ursprung auf Lateinisch „origo“ heißt – ist das runde Zeichen in der Mitte eines Achsenkreuzes ist also offiziell keine Null, sondern ein O!

Achsen-/Punktsymmetrie, Graphische Übersicht | Mathe by Daniel Jung

39 verwandte Fragen gefunden

Was ist der Ursprung von einem Koordinatensystem?

Koordinatenursprung (mathematisches Kürzel: KOU) oder Ursprung bezeichnet den Punkt in einem Koordinatensystem oder einer Karte, an dem alle Koordinaten den Wert Null annehmen. Er wird auch Nullpunkt oder bei Polarkoordinaten Pol genannt.

Was ist der Ursprung?

Ursprung steht für: Koordinatenursprung, Nullpunkt der Koordinaten. Referenzpunkt, Bezugspunkt eines Bezugssystems. Kausaler Anlass für ein Geschehen; siehe Kausalität.

Wie erkennt man Achsensymmetrie und punktsymmetrie?

Beispiel k.

f(x) ist punktsymmetrisch zum Ursprung, da nur ungerade Hochzahlen vorkommen. In der Ableitung f'(x) = 18x²+12 kommen nur gerade Hochzahlen vor, f'(x) ist also achsensymmetrisch zur y-Achse.

Was ist eine Punktsymmetrische Figur?

Punktsymmetrie liegt vor, wenn eine Figur an einer Geraden gespiegelt wird. Punktsymmetrie liegt vor, wenn zwei Figuren denselben Flächeninhalt haben. Punktsymmetrie liegt vor, wenn eine Figur an einem Punkt gespiegelt wird.

Was ist der Unterschied zwischen punktsymmetrie und drehsymmetrie?

Die Punktsymmetrie ist eine besondere Form der Drehsymmetrie. Eine Figur heißt punktsymmetrisch, wenn sie bei einer Drehung um 180° um ein Symmetriezentrum Z wieder in sich selbst übergeht. Die Verbindungsstrecken zwischen Ur- und Bildpunkten werden durch das Symmetriezentrum halbiert.

Welche Eigenschaft muss für eine Funktion f gelten damit der Graph von f?

Da man jede Funktion jedoch unmöglich auf Symmetrie bezüglich aller Punkte und Parallelen zur Y-Achse prüfen kann, weist man solch eine Symmetrie nur nach, wenn direkt danach gefragt ist, bzw. wenn der Graph "verdächtig" aussieht. Die Funktion f(x) ist also achsensymmetrisch bezüglich x0 = 3.

Kann eine Funktion achsensymmetrisch und punktsymmetrisch sein?

Graphen können achsensymmetrisch oder punktsymmetrisch sein. Bei besonderen Achsen bzw. Bei Punktsymmetrie zum Ursprung muss gelten: f ( − x ) = − f ( x ) \sf f(-x)=-f(x) f(−x)=−f(x) ...

Wann ist eine Funktion Achsensymmetrisch oder Punktsymmetrisch?

Der Graph von f ist achsensymmetrisch zur y-Achse, da alle Potenzen von x gerade sind; der Graph von g ist punktsymmetrisch zum Koordinatenursprung, da alle Potenzen von x ungerade sind. Demzufolge ist f eine gerade und g eine ungerade Funktion. Die Funktion h ist weder gerade noch ungerade.

Was versteht man unter Achsensymmetrie?

Achsensymmetrie ist die spiegelbildliche Anordnung von Zeichen zu beiden Seiten einer gedachten Linie. ... Eine Figur heißt achsensymmetrisch, wenn sie durch die senkrechte Achsenspiegelung an ihrer Symmetrieachse auf sich selbst abgebildet wird.

Wann ist eine Ganzrationale Funktion Punktsymmetrisch?

Der Graph einer ganzrationalen Funktion ist genau dann achsensymmetrisch, wenn deren Funktionsgleichung nur gerade Exponenten enthält. Der Graph einer ganzrationalen Funktion ist genau dann punktsymmetrisch, wenn deren Funktionsgleichung nur ungerade Exponenten enthält.

Was ist symmetrisch?

Mit dem geometrischen Begriff Symmetrie (altgriechisch συμμετρία symmetria Ebenmaß, Gleichmaß, aus σύν syn „zusammen“ und μέτρον metron, Maß) bezeichnet man die Eigenschaft, dass ein geometrisches Objekt durch Bewegungen auf sich selbst abgebildet werden kann, also unverändert erscheint.

Welche der folgenden Buchstaben sind Punktsymmetrisch?

Die Buchstaben N, X, S sind punktsymmetrisch, die Buchstaben A, C, R sind es nicht.

Was ist ein Nichtpräferenzieller Ursprung?

Nichtpräferenzieller Warenursprung. Der nichtpräferenzielle Ursprung von Waren ist Grundlage für unterschiedliche rechtliche Maßnahmen. Er entspricht nicht zwingend dem Versendungsort der jeweiligen Ware; vielmehr ordnet er die Ware der Wirtschaft eines bestimmten Landes oder Gebiets zu.

Was bedeutet Wikipedia übersetzt?

Das Ziel der Wikipedia ist der Aufbau einer Enzyklopädie durch freiwillige und ehrenamtliche Autoren. Der Name Wikipedia setzt sich zusammen aus Wiki (entstanden aus wiki, dem hawaiischen Wort für ‚schnell'), und encyclopedia, dem englischen Wort für ‚Enzyklopädie'.