Stetig ist das?
Gefragt von: Tom Hiller | Letzte Aktualisierung: 21. Juni 2021sternezahl: 4.1/5 (67 sternebewertungen)
Eine Funktion ist stetig, wenn der Graph der Funktion im Definitionsbereich nahtlos gezeichnet werden kann. Anders ausgedrückt: Der Graph muss in jedem zusammenhängenden Teilintervall aus dem Definitionsbereich nahtlos gezeichnet werden können.
Warum ist Stetigkeit wichtig?
Die Stetigkeit ist ein wichtiges Konzept der Topologie. Sie erhält nämlich Nachbarschaftsbeziehungen. Dies bedeutet, dass durch stetige Funktionen benachbarte Punkte „nicht auseinandergerissen“ werden.
Wie prüfe ich ob eine Funktion stetig ist?
Es gibt eine einfache Methode, um herauszufinden ob eine Funktion stetig ist: Zeichne den Graph der Funktion. Wenn dir das in einem Zug gelingt (also ohne den Stift abzusetzen), dann ist die Funktion stetig.
Wann ist eine Funktion stetig fortsetzbar?
Wenn die Funktion f an der Stelle x0 nicht definiert ist, aber der linksseitige und rechtsseitige Grenzwert existieren und übereinstimmen, wird dieser Wert als Grenzwert limx→x0 f(x) bezeichnet. Dann ist f stetig fortsetzbar in x0.
Wann ist eine Folge stetig?
Definition. Eine Funktion ist also stetig, wenn für jede erdenkliche Folge an x-Werten, die sich x0 nähert, auch deren Funktionswerte gegen den Funktionswert von f(x0) streben.
Stetigkeit, Übersicht der Möglichkeiten, mit stetig hebbarer Lücke | Mathe by Daniel Jung
34 verwandte Fragen gefunden
In welchen Punkten ist die Funktion stetig?
Die Funktion f heißt stetig auf dem Bereich D, wenn sie an allen Punkten x∗ ∈ D stetig ist.
Ist eine stetige Funktion immer differenzierbar?
Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.
Wann gibt es eine Definitionslücke?
Definitionslücken treten insbesondere bei gebrochenrationalen Funktionen auf. Alle x-Werte, für die die Nennerfunktion den Wert Null annimmt, werden als Definitionslücken bezeichnet.
Wann ist eine Funktion differenzierbar?
Eine Funktion ist differenzierbar, wenn sie an jeder Stelle x0 differenzierbar ist - heißt umgekehrt: Sobald es eine Stelle gibt, an der f(x) nicht differenzierbar ist, ist die gesamte Funktion nicht differenzierbar.
Wann ist eine Definitionslücke Hebbar?
Wie schon mehrmals erwähnt ist eine hebbare Definitionslücke gegeben, wenn sowohl der Nenner als auch der Zähler für einen bestimmten Wert für x_0 = 0wird. Der Begriff hebbar bedeutet in diesem Zusammenhang, dass die Definitionslücke behoben und damit der Definitionsbereich erweitert werden kann.
Welche Funktionen sind immer stetig?
Stetig sind:
Alle Polynome, Potenz-, Exponential- und Logarithmusfunktionen sowie die trigonometrischen und hyperbolischen Funktionen. ... Auch Funktionen mit Polstellen, also z.B. rationale Funktionen mit Nullstellen im Nenner (auch die Tangens-Funktion) sind stetig!
Wie begründet man Stetigkeit?
Eine reelle Funktion ist stetig, wenn hinreichend kleine Änderungen des Arguments zu beliebig kleinen Änderungen des Funktionswerts führen. Intuitiv bedeutet das, dass der Graph eine zusammenhängende Linie ist.
Wann ist eine Funktion stetig in einem Intervall?
f heißt stetig auf einem Intervall, wenn f in jedem Punkt des Inter- valls stetig ist.
Wann gibt es keine Definitionslücke?
Wenn der Zähler und der Nenner keine gemeinsamen Nullstellen haben, d.h. keine hebbare Definitionslücke existiert, sind die Nullstellen des Nenners die Definitionslücken (genauer Polstellen) von der Funktion. Diese Polstelle wird auch senkrechte Asymptote genannt.
Wann ist eine nullstelle eine polstelle?
Polstellen, Definitionslücken
Eine gebrochenrationale Funktion mit einem Nennerpolynom vom Grad n besitzt höchstens n Definitionslücken. Eine Definitionslücke x0 (Nullstelle des Nennerpolynoms), die nicht zugleich Nullstelle des Zählerpolynoms z(x) ist heißt Polstelle.
Wann hat man eine polstelle?
In der Mathematik bezeichnet man eine einpunktige Definitionslücke einer Funktion als Polstelle oder auch kürzer als Pol, wenn die Funktionswerte in jeder Umgebung des Punktes (betragsmäßig) beliebig groß werden. Damit gehören die Polstellen zu den isolierten Singularitäten.
Wann ist eine Funktion stetig aber nicht differenzierbar?
In der Mathematik bezeichnet man als Weierstraß-Funktion ein pathologisches Beispiel einer reellwertigen Funktion einer reellen Variablen. Diese Funktion hat die Eigenschaft, dass sie überall stetig, aber nirgends differenzierbar ist. Sie ist nach ihrem Entdecker Karl Weierstraß benannt.
Wie oft ist die Funktion differenzierbar?
Eine glatte Funktion ist eine mathematische Funktion, die unendlich oft differenzierbar (insbesondere stetig) ist.