Symmetrieeigenschaften von funktionen bestimmen?

Gefragt von: Falk Körner B.A.  |  Letzte Aktualisierung: 31. Dezember 2021
sternezahl: 4.3/5 (36 sternebewertungen)

Bei ganzrationalen Funktionen schaut man nur auf die Hochzahlen von „x“. Gibt es nur gerade Hochzahlen, ist f(x) symmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, ist f(x) symmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, ist f(x) nicht symmetrisch.

Wie wird die Symmetrie am Graphen untersucht?

Man kann eine Funktion auf ihr Symmetrieverhalten untersuchen, indem man einfach f(-x) ausrechnet und vergleicht, ob das Ergebnis mit f(x) oder -f(x) übereinstimmt. Dabei muss für x auch -x gelten. Eine Funktion kann natürlich nicht nur bezüglich der Y-Achse, bzw. des Ursprungs ein Symmetrieverhalten zeigen.

Was ist Symmetrie verhalten?

Das Symmetrieverhalten gibt Auskunft darüber, ob der Graph einer Funktion zu einer Achse oder einem Punkt symmetrisch ist.

Wie sieht eine achsensymmetrische Funktion aus?

Der Graph von f ist achsensymmetrisch zur y-Achse, da alle Potenzen von x gerade sind; der Graph von g ist punktsymmetrisch zum Koordinatenursprung, da alle Potenzen von x ungerade sind. Demzufolge ist f eine gerade und g eine ungerade Funktion. Die Funktion h ist weder gerade noch ungerade.

Wann ist es achsensymmetrisch?

Achsensymmetrie ist die spiegelbildliche Anordnung von Zeichen zu beiden Seiten einer gedachten Linie. ... Eine Figur heißt achsensymmetrisch, wenn sie durch die senkrechte Achsenspiegelung an ihrer Symmetrieachse auf sich selbst abgebildet wird.

Symmetrie, Funktionen, rechnerischer Ablauf, Punktsymmetrie, Achsensymmetrie | Mathe by Daniel Jung

35 verwandte Fragen gefunden

Wann ist es punktsymmetrisch und wann achsensymmetrisch?

Um eine Funktion f(x) auf Symmetrie zu untersuchen, bildest du als erstes f(−x). Lässt sich dieser Ausdruck in f(x) umformen, ist der Graph achsensymmetrisch zur y-Achse. Lässt sich dieser Ausdruck dagegen in −f(x) umformen, ist der Graph punktsymmetrisch zum Ursprung.

Was gilt bei Punktsymmetrie?

Punktsymmetrie zum Ursprung

Eine Funktion gilt als punktsymmetrisch, wenn sie durch eine Spiegelung am Symmetriepunkt auf sich selbst abgebildet wird.

Wann ist eine Funktion unsymmetrisch?

Definition. gilt. Anschaulich ist eine reelle Funktion genau dann gerade, wenn ihr Funktionsgraph achsensymmetrisch zur y-Achse ist, und ungerade, wenn ihr Funktionsgraph punktsymmetrisch zum Koordinatenursprung ist.

Welche Symmetrien zeigt der Graph der Funktion?

Der Graph einer Funktion f ist achsensymmetisch zur vertikalen Geraden x = a, wenn für alle x∈Df gilt: f(a – x) = f(a + x). Der Graph einer Funktion f ist punktsymmetrisch bezüglich des Punkts P(a|b), wenn für alle x∈Df gilt: b – f(a – x) = f(a + x) – b. Beispiele: f:x↦(x−2)2, x∈R.

Was bedeutet Symmetrie bei Funktionen?

Eine symmetrische Funktion ist in der Mathematik eine Funktion mehrerer Variablen, bei der die Variablen untereinander vertauscht werden können, ohne den Funktionswert zu verändern. ... Das Gegenstück zu den symmetrischen Funktionen sind antisymmetrische Funktionen.

Wann ist eine Funktion weder Achsen noch punktsymmetrisch?

Symmetrie zum Koordinatensystem nicht vorhanden

ist der Graph weder achsensymmetrisch zur y-Achse noch punktsymmetrisch zum Ursprung.

Kann eine Funktion Punkt und achsensymmetrisch sein?

Graphen können achsensymmetrisch oder punktsymmetrisch sein. Bei besonderen Achsen bzw. Punkten gibt es einfache Formeln um Symmetrie nachzuweisen: ... Bei Punktsymmetrie zum Ursprung muss gelten: f ( − x ) = − f ( x ) f(-x)=-f(x) f(−x)=−f(x)

Wie zeigt man Symmetrie?

Bei ganzrationalen Funktionen schaut man nur auf die Hochzahlen von „x“. Gibt es nur gerade Hochzahlen, ist f(x) symmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, ist f(x) symmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, ist f(x) nicht symmetrisch.

Wann ist eine Gebrochenrationale Funktion symmetrisch?

Die gebrochen-rationale Funktion f muss also punktsymmetrisch zum Ursprung sein. Wir sehen also allgemein: Ist der Zähler achsensymmetrisch zur y-Achse (A) und der Nenner punktsymmetrisch zum Ursprung (P), so ist die gebrochen-rationale Funktion punktsymmetrisch zum Ursprung (P).

Wann ist eine polynomfunktion symmetrisch?

1. Punktsymmetrie zum Ursprung liegt nur vor, wenn ausschließlich ungerade Exponenten in der Funktionsgleichung vorliegen. 2. Achsensymmetrie zur y-Achse liegt nur vor, wenn ausschließlich gerade Exponenten in der Funktionsgleichung vorliegen.

Was gibt es für Symmetrien?

In der Geometrie gibt es genau drei Arten von Symmetrien.
...
Symmetrie von Figuren: Erklärung und Abbildungen
  • Achsensymmetrie.
  • Punktsymmetrie.
  • Rotationssymmetrie.
  • Asymmetrie.

Wann ist eine Funktion periodisch?

Graphen von trigonometrischen Funktionen. Definition: Eine Funktion f heißt periodisch, wenn es eine Zahl a ≠ 0 gibt, sodass für alle x, x+a∈Df gilt: f(x+a)=f(x). Die kleinste positive Zahl p mit dieser Eigenschaft nennt man Periode.

Wie erkenne ich eine gerade Funktion?

Die Funktionskurve einer geraden Funktion ist spiegelsymmetrisch zur Y-Achse angeordnet. Dies bedeutet, dass jeder auf der Kurve gelegene Punkt durch Spiegelung an der Y-Achse wieder in einen Kurvenpunkt übergeht. Mathematisch findet man solch eine Funktion wenn gilt: f(-x) = f(x).

Wann ist eine polynomfunktion gerade?

Ein Polynom ist gerade, wenn jeder Term eine gerade Funktion ist. Ein Polynom ist ungerade, wenn jeder Term eine ungerade Funktion ist. Ein Polynom ist weder gerade noch ungerade, wenn es sich aus geraden und ungeraden Funktionen zusammensetzt.

Wie erkenne ich ob eine Figur punktsymmetrisch ist?

Eine Figur heißt punktsymmetrisch, wenn sie durch die Spiegelung an einem Punkt, dem sogenannten Symmetriepunkt oder Symmetriezentrum, auf sich selbst abgebildet wird. Es handelt sich um eine Drehung der Figur um 180°.

Welche Figuren sind achsensymmetrisch?

Achsensymmetrische Figuren
  • Quadrat. Jedes Quadrat hat vier Symmetrieachsen.
  • Rechteck. Ein Rechteck, das kein Quadrat ist, hat zwei Symmetrieachsen.
  • Raute. Eine Raute, die kein Quadrat ist, hat zwei Symmetrieachsen.
  • Drachenviereck. ...
  • Symmetrisches Trapez. ...
  • Gleichseitiges Dreieck. ...
  • Gleichschenkliges Dreieck. ...
  • Kreis.

Was ist symmetrisch Grundschule?

„Symmetrie ist eine Eigenschaft von Figuren, bei der eine Figur oder ein räumliches Objekt durch eine Kongruenzabbildung auf sich selbst abgebildet werden kann. ... Der Begriff Symmetrie wird dabei sowohl für die Eigenschaften der abgebildeten Figuren als auch für die Abbildung verwendet, die zu dieser Eigenschaft führt.

Kann eine Figur achsensymmetrisch und punktsymmetrisch sein?

Achsen- und punktsymmetrische Figuren top

Es gibt Figuren wie das Rechteck, die sowohl achsensymmetrisch als auch punktsymmetrisch sind. Für diese Figuren gibt es zwei aufeinander senkrecht stehende Symmetrieachsen. Das Zentrum liegt im Schnittpunkt dieser beiden Achsen.

Was ist der Unterschied zwischen Punktsymmetrie und drehsymmetrie?

Die Punktsymmetrie ist eine besondere Form der Drehsymmetrie. Eine Figur heißt punktsymmetrisch, wenn sie bei einer Drehung um 180° um ein Symmetriezentrum Z wieder in sich selbst übergeht.

Ist ein Rechteck punktsymmetrisch?

Bei einem Viereck liegt Punktsymmetrie (in sich) genau dann vor, wenn es sich um ein Parallelogramm handelt. Das Symmetriezentrum ist dann der Schnittpunkt der Diagonalen. Als Spezialfälle des Parallelogramms sind Rechteck, Raute und Quadrat punktsymmetrisch. ... Ein Dreieck ist niemals punktsymmetrisch.