Wann lässt sich eine matrix diagonalisieren?

Gefragt von: Isolde Lehmann  |  Letzte Aktualisierung: 18. Februar 2022
sternezahl: 4.5/5 (32 sternebewertungen)

Eine quadratische Matrix, bei der alle Elemente außerhalb der Hauptdiagonale gleich Null sind, heißt Diagonalmatrix. Eine Matrix zu diagonalisieren bedeutet, eine quadratische Matrix in eine Diagonalmatrix umzuwandeln.

Kann man jede Matrix Diagonalisieren?

Du kannst aber nicht jede Matrix diagonalisieren. Wie kannst du die Diagonalisierbarkeit einer Matrix prüfen? die geometrische Vielfachheit und die algebraische Vielfachheit ihrer Eigenwerte gleich sind.

Wann ist Matrix Diagbar?

Ist eine Matrix diagonalisierbar, so ist die geometrische Vielfachheit ihrer Eigenwerte gleich der jeweiligen algebraischen Vielfachheit. Das bedeutet, die Dimension der einzelnen Eigenräume stimmt jeweils mit der algebraischen Vielfachheit der entsprechenden Eigenwerte im charakteristischen Polynom der Matrix überein.

Wann ist eine Matrix Diagonalisierbar Beispiel?

Definition. Eine quadratische Matrix A ∈ C(n,n) heißt diagonalisierbar, wenn es eine Matrix X ∈ GL(n,C) gibt mit A = XDX−1 .

Wie viele verschiedene Eigenwerte kann eine Matrix haben?

Prinzipiell hat eine Matrix soviele Eigenwerte wie sie Zeilen/Spalten hat (Eigenwerte gibt es nur bei quadratischen Matrizen). Dabei kann es auch vorkommen, dass ein Eigenwert mehrfach auftritt.

Matrix diagonalisieren + Matrixpotenzen Einfach Erklärt!

27 verwandte Fragen gefunden

Was sagen die Eigenwerte aus?

Eigenwerte charakterisieren wesentliche Eigenschaften linearer Abbildungen, etwa ob ein entsprechendes lineares Gleichungssystem eindeutig lösbar ist oder nicht. In vielen Anwendungen beschreiben Eigenwerte auch physikalische Eigenschaften eines mathematischen Modells.

Wann ist die transponierte gleich der inversen?

Inverse Matrix

Die transponierte und die invertierte Matrix sind bei einer orthogonalen Matrix gleich (AT = A-1). Das Gleiche gilt also auch für die Multiplikation mit der Inversen Matrix.

Für welche Werte ist die Matrix Diagonalisierbar?

für alle λ ∈ R besitzt die Matrix M die drei verschiedenen Eigenwerte λ1 = 0, λ2 = 1 und λ2 = 2 und ist damit als 3 × 3–Matrix diagonalisierbar; folglich ist auch der Endomorphismus F von V diagonalisierbar.

Ist jede invertierbare Matrix Diagonalisierbar?

(a) Jede invertierbare Matrix ist diagonalisierbar. ... Eine Matrix ist invertierbar, wenn sie Determinante = 0 hat. Besitzt jedoch eine Matrix den Eigenwert 0, dann muss ihre Determinante = 0 und somit die Matrix singulär sein.

Ist jede komplexe Matrix Diagonalisierbar?

Hieraus folgt nun unmittelbar, dass jede normale Matrix (also auch jede komplex hermitesche oder reell symmetrische Matrix) diagonalisierbar ist.

Ist jede Matrix Trigonalisierbar?

Eine (n × n)-Matrix A über K ist genau dann trigonalisierbar, falls eine reguläre Matrix R so existiert, daß RAR1 eine obere Dreiecksmatrix ist. Anstelle von trigonalisierbar sagt man auch triangulierbar.

Wann ist eine Matrix normal?

Der Spektralsatz besagt, dass eine Matrix A {\displaystyle A} genau dann normal ist, wenn es eine unitäre Matrix U {\displaystyle U} gibt, so dass A = U D U ∗ {\displaystyle A=UDU^{\rm {*}}} , wobei D {\displaystyle D} eine Diagonalmatrix ist.

Wann ist eine Matrix nicht Diagonalisierbar?

Wenn das charakteristische Polynom einer -Matrix weniger als Nullstellen besitzt, ist die Matrix nicht diagonalisierbar. Die geometrische Vielfachheit eines Eigenwertes entspricht der Dimension des zugehörigen Eigenraums.

Wie Diagonalisiert man eine Matrix?

Die Matrix kann nur diagonalisiert werden, wenn die Anzahl der Nullstellen gleich der Anzahl der Eigenvektoren ist. Für die Nullstelle x_{2,3} = 6, d. h. für den Eigenwert \lambda = 6, müssten demnach 2 linear unabhängige Eigenvektoren resultieren, weil dieser Eigenwert die Vielfachheit 2 aufweist.

Was ist der Kern einer Matrix?

Der Kern einer Matrix ist eine Menge von Vektoren. Genauer gesagt, handelt es sich dabei um all die Vektoren, welche von rechts an die Matrix multipliziert den Nullvektor ergeben. Also alle Vektoren, die von der betrachteten Matrix auf den Nullvektor abgebildet werden, liegen im sogenannten Kern der Matrix.

Ist jede symmetrische Matrix Diagonalisierbar?

Eine symmetrische Matrix ist in der Mathematik eine quadratische Matrix, deren Einträge spiegelsymmetrisch bezüglich der Hauptdiagonale sind. ... So ist eine reelle symmetrische Matrix stets selbstadjungiert, sie besitzt nur reelle Eigenwerte und sie ist stets orthogonal diagonalisierbar.

Was bedeutet Invertierbar Matrix?

Eine reguläre, invertierbare oder nichtsinguläre Matrix ist in der Mathematik eine quadratische Matrix, die eine Inverse besitzt. ... Nicht zu jeder quadratischen Matrix existiert eine Inverse. Eine quadratische Matrix, die keine Inverse besitzt, wird singuläre Matrix genannt.

Kann 0 ein Eigenwert sein?

Der Nullvektor ist Eigenvektor zu jedem Eigenwert. Aber, damit ein Eigenwert wirklich ein Eigenwert ist, muss es einen Vektor geben, der ungleich dem Nullvektor ist. Dieser Vektor muss erfüllen. => ist 0 Eigenwert von A dann wird zwar erfüllt, aber es muss noch mindestens einen anderen Vektor geben.

Wann ist ein endomorphismus Diagonalisierbar?

Satz: Ein Endomorphismus f ist diagonalisierbar genau dann, wenn charf (X) über K in Linearfaktoren zerfällt und für alle Eigenwerte von f die geometrische Vielfachheit gleich der arithmetischen Vielfachheit ist.

Wann ist endomorphismus Diagonalisierbar?

Definition Der Endomorphismus ϕ ist diagonalisierbar, falls eine Basis B von V existiert, so dass die Abbildungsmatrix von ϕ bzgl. der Basis B eine Diagonalmatrix ist.

Unter welchen Voraussetzungen besitzt eine Diagonalmatrix eine inverse?

Für eine Diagonalmatrix ist eine inverse Matrix leicht zu bilden: die Werte auf der Hauptdiagonalen (kein Wert auf der Hauptdiagonalen darf 0 sein, sonst ist die Determinante 0 und die Matrix nicht invertierbar) werden einfach durch deren Kehrwerte ersetzt, also 1/2 für 2, 1/3 für 3 usw.

Wann sind zwei Matrizen orthogonal zueinander?

Rechnerisch sind zwei Vektoren orthogonal, wenn ihr Skalarprodukt gleich Null ist. Ein Vektor ist normiert, wenn er die Länge besitzt. Ein normierter Vektor heißt auch Einheitsvektor.

Was versteht man unter orthogonalen Matrizen?

Eine orthogonale Matrix ist in der linearen Algebra eine quadratische, reelle Matrix, deren Zeilen- und Spaltenvektoren orthonormal bezüglich des Standardskalarprodukts sind. ... Orthogonale Matrizen stellen Kongruenzabbildungen im euklidischen Raum, also Drehungen, Spiegelungen und Kombinationen daraus, dar.

Kann eine Matrix gleich ihrer Transponierten sein?

Die Transponierte eines Produkts von Matrizen ist demnach gleich dem Produkt der Transponierten, jedoch in umgekehrter Reihenfolge.

Was sagen Eigenwerte einer Matrix aus?

Eigenwerte einfach erklärt

Für quadratische Matrizen gibt es bestimmte Vektoren, die man an die Matrix multiplizieren kann, sodass man den selben Vektor als Ergebnis erhält, nur mit einem Vorfaktor multipliziert. Einen solchen Vektor nennt man Eigenvektor und der Vorfaktor heißt Eigenwert einer Matrix.