Wann riemann integrierbar?

Gefragt von: Marianne Eichhorn  |  Letzte Aktualisierung: 27. März 2021
sternezahl: 4.7/5 (9 sternebewertungen)

Riemann-Integrierbarkeit
Riemann-integrierbar, falls sie auf diesem Intervall fast überall stetig ist. ... Insbesondere ist über einem kompakten Intervall jede Regelfunktion, jede monoton wachsende oder monoton fallende Funktion und jede stetige Funktion Riemann-integrierbar.

Wann ist etwas Riemann integrierbar?

das Riemann-Integral von f über Q. Eine beschränkte Funktion f : Q → R ist genau dann Riemann-integrierbar, wenn es zu jedem ε > 0 eine Zerlegung Z von Q mit O(f,Z) − U(f,Z) < ε. Beweis: 1) Es sei zunächst f nicht integrierbar. Dann gibt es Zahlen I1,I2, so dass I∗(f) ≤ I1 < I2 ≤ I∗(f) ist, und wir setzen ε := I2 − I1.

Wann ist eine Funktion uneigentlich integrierbar?

Ein uneigentliches Integral ist ein Begriff aus dem mathematischen Teilgebiet der Analysis. Mit Hilfe dieses Integralbegriffs ist es möglich, Funktionen zu integrieren, die einzelne Singularitäten aufweisen oder deren Definitionsbereich unbeschränkt ist und die deshalb im eigentlichen Sinn nicht integrierbar sind.

Was ist eine Untersumme?

Die Summe der entsprechenden Flächeninhalte ist die sogenannte Untersumme. Die Flächenstücke rechts liegen komplett oberhalb des Funktionsgraphen. Die resultierende Fläche als Summe der Einzelflächen wird als Obersumme bezeichnet.

Was ist die Ober und Untersumme?

Bei der Obersumme wählt man den größten Funktionswert des betrachteten Teilintervalls als höchsten Punkt des Rechtecks. Bei die Untersumme wählt man entsprechend den minimalen Funktionswert.

Riemann Integral, Riemann Summe | Herleitung + Bedeutung + Voraussetzung

32 verwandte Fragen gefunden

Was ist eine Flächeninhaltsfunktion?

Die Flächeninhaltsfunktion dient dazu, den Flächeninhalt einer Fläche zu berechnen, die von einem Graphen eingeschlossen wird. Der Funktionsgraph G f G_f Gf der Funktion f schließt mit der x-Achse ein Flächenstück ein.

Wann ist ein Integral uneigentlich?

Im Allgemeinen muss ein uneigentliches Integral keine Lösung besitzen. Eine Lösung existiert nur, wenn die Stammfunktion gegen den betrachteten Wert einen endlichen Grenzwert besitzt, wie hier die 0.

Wann konvergieren Integrale?

Man berechnet das Integral ganz normal und betrachtet am Ende den Grenzwert. Ist dieser endlich, so konvergiert das uneigentliche Integral.

Was macht man mit einem Integral?

Das Integral ist ein Oberbegriff für das bestimmtes und unbestimmtes Integral. Ein bestimmtes Integral liefert einen Zahlenwert, während ein unbestimmtes Integral eine Funktion liefert. ... Das bestimmte Integral berechnet nämlich die Fläche zwischen dem Graph einer Funktion und der x-Achse.

Was ist ein unbestimmtes Integral?

Unbestimmte Integrale haben keine Integralgrenzen. Sie zu berechnen bedeutet, eine Stammfunktion der Funktion im Integral (dem sogenannten Integranden) zu finden. ... Eine Funktion hat also immer unendlich viele Stammfunktionen.

Was besagt der Hauptsatz der Differential und Integralrechnung?

Der Hauptsatz der Differential- und Integralrechnung stellt so eine Beziehung zwischen der Ableitung und dem Integral her und zeigt, dass sich Ableitung und Integration in gewisser Weise umkehren. Dies kann beispielsweise ausgenutzt werden, um Integrale leichter auszurechnen.

Was gibt das bestimmte Integral an?

Ein bestimmtes Integral weist Integrationsgrenzen auf. Die Lösung des bestimmten Integrals ist die Größe der Fläche unter / über dieser Funktion zur horizontalen Achse (x) innerhalb der Integrationsgrenzen.

Was ist eine orientierte Fläche?

Beim orientierten Flächeninhalt, handelt es sich um einen Flächeninhalt, der dann negativ gezählt wird, wenn er unterhalb der x-Achse liegt. ... Dann ist der orientierte Flächeninhalt einfach der Flächeninhalt der vom Graph von f über [ a ; b ] mit der x-Achse eingeschlossenen Fläche.

Wie kann man Aufleiten?

"Aufleitung" sind umgangssprachlich. Er wird von vielen Schülern einfach als das Gegenteil von Ableiten angesehen. In der Mathematik spricht man bei diesem Bereich richtigerweise von Integration bzw.
...
Es folgen Beispiele:
  1. f(x) = 2 -> F(x) = 2x + C.
  2. f(x) = 5 -> F(x) = 5x + C.
  3. f(x) = 8 -> F(x) = 8x + C.

Wie integriere ich richtig?

Die Umkehrung der Ableitung nennt man Integration. Hier geht man den entgegengesetzten Weg und man schließt von f''(x) auf f'(x) und weiter auf f(x). Liegt bereits f(x) vor und man integriert erneut, erhält man F(x). Leitet man hingegen F(x) wieder ab erhält man f(x).

Wie bestimme ich eine stammfunktion?

Um die Stammfunktion von f(x)=x2 (und anderen Potenzfunktionen) zu bestimmen, geht ihr so vor:
  1. Erhöht den Exponenten um 1.
  2. Schreibt den Kehrbruch dieses "neuen" Exponenten als Faktor vor das x, also 1 durch den um 1 erhöhten Exponenten.
  3. Fertig das ist die "Aufleitung".

Warum ist die stammfunktion die Fläche?

Das Konzept der Stammfunktion ist eine Rechenhilfe zur Berechnung von Integralen/Flächen dank dem Hauptsatz der Integralrechnung. Es gibt stets auch eine Stammfunktion F(x), die die Fläche unter f von 0 bis x beschreibt. Für diese muss gelten F(0) = 0.