Warum kann während der absoluten refraktärzeit kein aktionspotential ausgelöst werden?

Gefragt von: Enno Glaser MBA.  |  Letzte Aktualisierung: 20. August 2021
sternezahl: 4.3/5 (46 sternebewertungen)

absolute Refraktärzeit: Während dieser Zeit kann kein Aktionspotential ausgelöst werden, unabhängig von der Reizstärke, da die spannungsabhängigen Natrium-Kanäle in einem inaktivierten, geschlossenen Zustand vorliegen.

Welche Phasen umfasst die Refraktärzeit begründen Sie?

Relative Refraktärzeit

Der Zeitraum der relativen refraktären Phase ist wie bei der vollständigen Inaktivierung ca. 1-2 ms lang. Die Phase entspricht dem Abschnitt der Hyperpolarisation während des Aktionspotentials. Dabei sinkt die Spannung unter die des anfänglichen Ruhepotentials.

Warum braucht man Refraktärzeit?

Die Refraktärzeit begrenzt die maximale Aktionspotential-Frequenz eines Neurons und verhindert eine retrograde Erregungsausbreitung.

Warum gibt es eine maximale Aktionspotentialfrequenz?

Je stärker beispielsweise der eingegangene Reiz (und die damit verbundene Depolarisation) ist, desto höher ist die Frequenz der dadurch ausgelösten Aktionspotenziale. Aufgrund der Refraktärzeit beträgt die maximale Frequenz bei Neuronen ca. 500 Hz .

Was ist die relative und absolute Refraktärzeit?

Auf die absolute Refraktärzeit folgt die relative Refraktärzeit. Sie entspricht der Phase der Hyperpolarisation, die durch Öffnung der spannungsabhängigen Kaliumkanäle und den Kaliumausstrom aus der Zelle gekennzeichnet ist. ... Die Reize müssen also deutlich stärker sein als bei einem Neuron außerhalb der Refraktärzeit.

Refraktärphase | Refraktärzeit einfach erklärt | Biologie Abiturwissen | BiobyLuke

31 verwandte Fragen gefunden

Wann Refraktärzeit?

Als Refraktärzeit wird der Zeitraum während bzw. nach der Ausbildung eines Aktionspotentials bezeichnet, in dem die erregte Nervenzelle nicht erneut auf einen Reiz reagieren kann.

Was ist die depolarisation?

Unter Depolarisation versteht man in der Physiologie die Verminderung des Membranpotentials, d.h. des Ladungsunterschieds (Polarisation) der beiden Seiten einer biologischen Membran. ... Das Gegenteil der Depolarisation ist die Hyperpolarisation.

Wieso wird nicht immer ein Aktionspotential ausgelöst?

0,5 ms bei Neuronen), in der gar kein Aktionspotential auslösbar ist, von der relativen Refraktärzeit (ca. 3,5 ms bei Neuronen), in der wegen des erhöhten Schwellenpotentials dafür stärkere Reizstärken nötig sind bzw. nur ein deformierter Potentialverlauf auszulösen ist.

Warum wird der Spannungswert des Ruhepotentials unterschritten?

Abfall auf -90 mV: Die spannungsgesteuerten Kaliumionen-Kanäle sind weiterhin geöffnet und Kaliumionen strömen weiterhin nach außen, was das Innere der Membran negativer macht. Dies geschieht so lange, dass der Wert des Ruhepotentials sogar unterschritten wird.

Warum breitet sich das AP nur in eine Richtung aus?

Die Inaktivierung der Natriumkanäle in der Repolarisationsphase sorgt dafür, dass zum einen ein Abstand zwischen den einzelnen Aktionspotentialen entsteht (Frequenz) und zum anderen das Aktionspotential nur in eine Richtung auf dem Axon laufen kann (weil der einwärts gerichtete Stromfluss dadurch kein Aktionspotential ...

Warum ist das Ruhepotential negativ?

ungefähres Verhältnis (Innen/Außen)

Du siehst, dass sowohl innerhalb als auch außerhalb der Zelle jeweils positive und negative Ionen vorhanden sind. Das bedeutet, dass die Ladungen dort ausgeglichen sind. Aber über die Membran hinweg entsteht ein Ladungsunterschied, der das negative Ruhepotential erklärt.

Wann ist eine Nervenzelle nicht erregbar?

– In Nervenzellen verlaufen Aktionspotentiale nur entlang des Axons, nicht über Dendriten oder Perikaryon. ... Direkt nach dem Aktionspotential ist die Membran nicht wieder sofort erregbar, da die spannungsabhängigen Natriumkanäle noch inaktiv sind; man spricht von der absoluten Refraktärzeit (Dauer knapp 1 ms).

Warum kommt es zu hyperpolarisation?

Zellen im menschlichen Körper sind von einer Membran umschlossen. ... Wird dieses Ruhepotential der Membranspannung überschritten, so kommt es zur Hyperpolarisation der Membran. Dadurch wird Membranspannung negativer als während des Ruhepotentials, d.h. die Ladung im Zellinneren wird noch negativer.

Wie erfolgt die Erregungsleitung innerhalb einer Nervenzelle?

Der Informationsaustausch der Nervenzellen erfolgt an den sogenannten Synapsen. ... Kommt ein elektrischer Impuls in den Endknöpfchen eines Axon-Endkörperchens an, verschmelzen in den Endknöpfchen vorhandene Bläschen mit der Zellmembran und sogenannte Botenstoffe gelangen in den synaptischen Spalt.

Was ist ein Aktionspotential?

Das Aktionspotential beschreibt die Änderung des Membranpotentials einer Zelle während der Erregungsleitung.

Wie entsteht ein Rezeptorpotential?

Das Rezeptorpotential bezeichnet eine elektrische Antwort der Membranrezeptoren auf einen Reiz. Das Rezeptorpotential bildet sich als Folge der Ausschüttung von Natrium-Ionen über die entsprechenden Kanäle in die Rezeptorzelle aus (elektro-tonische Weiterleitung). ... Das Rezeptorpotential wächst mit der Stärke des Reizes.

Wie werden Aktionspotentiale gebildet und weitergeleitet?

Aktionspotentiale erfolgen durch die Öffnung von Natriumkanälen. ... Das Aktionspotential wird über das Axon weitergeleitet. Aktionspotentiale, die bei weiteren Neuronen ankommen, bilden sich durch zeitliche und räumliche Summation postsynaptischer Potentiale. Sie werden dann wiederum über deren Axon fortgeleitet.

Warum entspricht das Ruhemembranpotential nicht bei allen K+ Konzentrationen dem K+ gleichgewichtspotential?

Das Ruhepotential (resting potential - bei Nervenzellen zwischen -40 bis -80 mV, Muskelzellen bis -90 mV) ist im Wesentlichen durch Kaliumausstrom bedingt, d.h. es liegt nahe am K +-Gleichgewichtspotential. Abweichungen beruhen auf der Diffusion anderer Ionen durch die Membran, die aber üblicherweise geringgradig ist.

Wieso entsteht ein Nachpotential?

Die Hyperpolarisation erfolgt durch Aktivierung inhibitorischer Synapsen, durch das Öffnen oder Schließen bestimmter Ionenkanäle oder durch das Anlegen von Spannung geeigneter Polarität an die erregbare Membran. ... Man nennt diese auf die Repolarisation folgende Hyperpolarisation auch „Nachpotential“.

Warum ist das Aktionspotential so wichtig?

Jeder Reiz, den man auch als Erregung bezeichnet, wird durch solche Potentiale weitergegeben, damit er schlussendliche im Gehirn ankommt und interpretiert werden kann. Alle Vorgänge des menschlichen Körpers werden auf diese Weise reguliert. Daher sind die Aktionspotentiale essentiell für das menschliche Leben.

Warum wandert das Aktionspotential?

Natürliche Auslöser eines Aktionspotentials

Unter natürlichen Bedingungen lösen physikalische oder chemische Reize in einer Sinneszelle diese Potentialänderung aus. Die so erzeugte Erregung wandert über die Sinneszelle bis zu ihrem Endknöpfchen.

Was beeinflusst das Aktionspotential?

Durch jeden eintreffenden Reiz ändert sich das Ruhemembranpotential. Damit ein Aktionspotential ausgelöst werden kann, muss aber am Axonhügel ein Schwellenwert überschritten werden. Erst wenn sich das Membranpotential um 20 mV auf -50 mV erhöht, ist dieser Schwellenwert erreicht.

Was führt zu Depolarisation der Herzmuskelzelle?

Eine fortgeleitete Erregung führt zu einer Depolarisation der Herzmuskelzelle. Wenn das Schwellenpotenzial erreicht ist, wird ein Aktionspotenzial ausgelöst. Für die verschiedenen Phasen des Aktionspotenzials sind bestimmte Ionenströme verantwortlich: schnelle Depolarisation (schneller Einwärtsstrom von Na+-Ionen)

Was versteht man unter membranpotential?

Das Membranpotential ist eine elektrische Spannung , die aufgrund von Ladungsunterschieden in zwei voneinander getrennten Räumen entsteht. ... Du kannst an jeder Zellmembran ein Membranpotential messen. Besonders wichtig ist es aber bei Sinnes-, Muskel- und Nervenzellen . Dort nennst du es Ruhepotential .

Was versteht man unter Saltatorischer Erregungsleitung?

Saltatorische Erregungsleitung

So ein nicht-umhüllter Bereich des Axons heißt Ranvier'scher Schnürring. Das ermöglicht eine saltatorische Erregungsleitung. Dabei leitet das Neuron ein Aktionspotential entlang der Ranvier'schen Schnürringe „sprunghaft“ weiter.