Was ist der massendefekt physik?

Gefragt von: Leni Reichert-Lang  |  Letzte Aktualisierung: 8. April 2021
sternezahl: 4.5/5 (17 sternebewertungen)

Als Massendefekt (auch Massenverlust) bezeichnet man in der Kernphysik das Massenäquivalent der Bindungsenergie des Atomkerns. Er äußert sich als Differenz zwischen der Summe der Massen aller Nukleonen (Protonen und Neutronen) und der tatsächlich gemessenen (stets kleineren) Masse des Kerns.

Wie berechnet man den Massendefekt?

Berechnung. Der Massendefekt eines Nuklids ergibt sich aus der Differenz der Masse seiner Protonen (Kernladungszahl Z) und Neutronen (Neutronenanzahl N) und seiner tatsächlichen Kernmasse mk: Δm = Zmp + Nmn − m.

Was ist die Kernbindungsenergie?

Die Kernbindungsenergie ist die Energiemenge, die frei wird, wenn sich die Nukleonen (Protonen und Neutronen) zu einem Atomkern verbinden.

Warum nimmt die Bindungsenergie bei sehr großen Kernen wieder ab?

Leichtere Kerne haben relativ mehr Nukleonen an der Oberfläche, wo sie schwächer gebunden sind. Bei schwereren Kernen nimmt die Bindungsenergie je Nukleon dann wieder ab, denn je mehr Protonen vorhanden sind, desto stärker wächst die abstoßende Coulombkraft zwischen ihnen an.

Warum wird bei der Fusion so viel Energie frei?

Die frei werdende Energie bei einer Kernfusion geht hauptsächlich in kinetische Energie der entstehenden Teilchen über. Diese Energie lässt sich wie bei der Kernspaltung aus dem Massendefekt berechnen: Beispiel: Zwei Kerne des Wasserstoffisotops 2H (Deuterium) verschmelzen zu Tritium (3H).

Massendefekt und Kernbindungsenergie

28 verwandte Fragen gefunden

Warum entsteht bei der Kernfusion Energie?

Unter Kernfusion versteht man die Verschmelzung leichter Atomkerne zu schwereren Kernen. Eine Kernfusion erfolgt nur bei großem Druck und hoher Temperatur. ... Durch Kernfusion entsteht somit die Energie, die wir als Strahlungsenergie von der Sonne erhalten und ohne die auf der Erde kein Leben existieren würde.

Woher kommt die Energie bei der Kernfusion?

In der Sonne wird im sogenannte “Proton-Proton Prozess” aus vier Wasserstoffkernen (Protonen) ein Heliumkern gebildet, dabei werden je zwei Positronen und Neutrinos, und Energie freigesetzt. Die Sonne verbrennt pro Sekunde 564 Millionen Tonnen Wasserstoff zu 560 Millionen Tonnen Helium.

Warum ist die Bindungsenergie bei Eisen am größten?

Bei etwa A=56 (Eisen) erreicht die Bindungsenergie pro Nukleon ihren größten Wert, um dann zu schwereren Kernen hin wieder abzufallen. Dieser Rückgang der mittleren Bindungsenergie ist auf die langreichweitigen, abstoßenden elektrischen Kräfte zwischen den Protonen zurückzuführen.

Welche Bindung ist am stärksten?

Die Ionenbindung ist stärker, wenn sie zwischen mehrfach geladenen Ionen wirkt als zwischen einfach geladenen. ... Die Ionenbindung ist die stärkste Bindung. Ihre Bindungsenergie liegt zwischen 600 kJ/mol und über 2000 kJ/mol.

Warum hält der Kern zusammen?

Atomkerne bestehen aus positiv geladenen Protonen und elektrisch neutralen Neutronen. Es wirken dort zwei gegensätzliche Kräfte. Die elektromagnetische Wechselwirkung treibt den Kern auseinander, die starke Wechselwirkung hält ihn zusammen. ... Dagegen wirkt weiterhin die abstoßende Kraft aller Protonen.

Was versteht man unter Nukleonen?

Als Nukleonen [nukleˈoːnən] (Singular Nukleon [ ˈnuːkleɔn]; von lat. nucleus „Kern“) bezeichnet man die beiden Teilchenarten, aus denen Atomkerne bestehen, nämlich Protonen und Neutronen.

Wie viel Energie hat 1 kg?

Für eine erste Rechnung soll eine Masse von 1 kg angenommen werden. Mit dieser soll die Energie "E" berechnet werden. Dabei darf die Lichtgeschwindigekit auf c = 300.000.000 m/s gerundet werden. Lösung: Wir setzen m = 1 kg und die Lichtgeschwindigkeit c = 300.000.000 m/s in die Gleichung E = mc2 ein.

Warum würde ohne das Wirken der kernkräfte ein Atomkern auseinander fallen?

Atommodell: Woher kommt die Energie, die den Atomkern zusammenhält? Atomkerne bestehen aus Neutronen und positiv geladenen Protonen. Durch die gegenseitige Abstoßung der Protonen müssten die Atomkerne eigentlich auseinenderfallen. Also muss irgendeine Energie vorhanden sein, die die Kernteilchen aneinanderkittet.

Wie kann ein Atom gespalten werden?

Unter Kernspaltung versteht man die Zerlegung eines schweren Atomkerns in leichtere Atomkerne. Dabei wird Energie freigesetzt. Die Spaltung eines schweren Atomkerns kann durch Beschuss mit Neutronen ausgelöst werden. Dadurch zerfällt der Kern in der Regel in zwei größere Kernbruchstücke sowie freie Neutronen.

Was versteht man unter massenzahl?

Die Massenzahl oder Nukleonenzahl (manchmal auch Kerngröße genannt) bezeichnet die Anzahl der Nukleonen, also der Kernbausteine eines Atoms eines chemischen Elements und gibt damit in etwa die Atommasse an. Ihr Formelzeichen ist A. Sie ist die Summe der Anzahl der Protonen Z und Neutronen N : A = Z + N.

Wo kommt die Masse her?

Jülich - Was ist der Ursprung der Masse? "Mehr als 99,9 Prozent der Masse der sichtbaren Materie stammen von den Protonen und Neutronen", sagt Zoltan Fodor, der das Forschungsprojekt am Jülicher Supercomputer JUGENE geleitet hat. ...

Welche zwischenmolekulare Kraft ist am stärksten?

Die Van-der-Waals-Kräfte gelten allgemein als schwächste zwischenmolekulare Kraft, gefolgt von der Dipol-Dipol-Wechselwirkung. Die Wasserstoffbrücken haben vergleichsweise mit Abstand die stärksten Anziehungskräfte, was nicht überraschend ist, da sie als starke Dipol-Dipol-Wechselwirkungen gelten.

Was ist stärker ionenbindung oder wasserstoffbrückenbindung?

Die relativen Bindungsstärken der Atom-, Ionen- und Metallbindungen sind in etwa vergleichbar, die Wasserstoffbrückenbindungen sind nur noch 1/10 so stark und die Van-der-Waals-Bindungen nur noch 1/100.

Warum sind Ionenbindungen stärker als Atombindungen?

Ionenbindungen sind um einiges stärker als Atombindungen. Eine recht typische Eigenschaft von Salzen ist die hohen Schmelztemperatur, da die Teilchen dort wegen der starken Ionenbindung stärker zusammen gehalten werden.

Warum ist die Bindungsenergie negativ?

negativ, wenn bei der Reaktion Energie frei wird. Richtig ist, wie oben gesagt, das Gegenteil: Die Bindungsenergie ist bereits bei der Bildung des gebundenen Systems freigesetzt und abgegeben worden, ist also nun nicht mehr verfügbar. ...