Was ist ein konvergenzradius?

Gefragt von: Herr Dr. Hanns Krüger  |  Letzte Aktualisierung: 20. Februar 2021
sternezahl: 4.6/5 (34 sternebewertungen)

Der Konvergenzradius ist in der Analysis eine Eigenschaft einer Potenzreihe der Form f(x)=\sum _{{n=0}}^{\infty }a_{n}^{n}, die angibt, in welchem Bereich der reellen Gerade oder der komplexen Ebene für die Potenzreihe Konvergenz garantiert ist.

Kann konvergenzradius unendlich sein?

Nein, ist der Konvergenzradius oo, dann konvergiert die Reihe für alle x ∈ ℝ (inklusive der Null), es ist ja auch 0 ∈ ℝ.

Wann konvergiert eine potenzreihe?

Potenzreihen sind innerhalb ihres Konvergenzkreises normal konvergent. Daraus folgt direkt, dass jede durch eine Potenzreihe definierte Funktion stetig ist. Des Weiteren folgt daraus, dass auf kompakten Teilmengen des Konvergenzkreises gleichmäßige Konvergenz vorliegt.

Was heißt absolut konvergent?

Eine absolute konvergente Reihe ist ein Begriff aus der Analysis. Es handelt sich um eine Verschärfung des Begriffs der konvergenten Reihe. Für die absolut konvergenten Reihen bleiben manche Eigenschaften endlicher Summen gültig, die für die größere Menge der konvergenten Reihen im Allgemeinen falsch sind.

Wann ist eine Reihe absolut konvergent?

Eine Reihe ist also genau dann absolut konvergent, wenn die Reihe ihrer Absolutbeträge konvergiert. Bei absolut konvergenten Reihen werden die Beträge ihrer Summanden so schnell klein, dass die Summe der Beträge beschränkt bleibt (und damit die Reihe konvergiert).

Konvergenzradius, Konvergenzbereich, Potenzreihen | Mathe by Daniel Jung

19 verwandte Fragen gefunden

Wann ist eine Reihe konvergent?

Eine Reihe konvergiert, wenn sie einen Grenzwert hat. Also wenn die Summe aller Folgeglieder, in exakt der vorgegebenen Reihenfolge, genau einen endlichen Wert annimmt.

Wann Majorantenkriterium Minorantenkriterium?

Ähnlich zum Majorantenkriterium ist das Minorantenkriterium. Jedoch kann mit diesem Kriterium die Divergenz und nicht die Konvergenz einer Reihe bewiesen werden. divergiert (jede unbeschränkte Folge muss divergieren).

Ist die harmonische Reihe konvergiert?

Die harmonische Reihe konvergiert nicht und ist damit ein Beispiel dafür, dass nicht jede Reihe mit einer Nullfolge (1n) als Bildungsvorschrift auch konvergiert. ... Sie wird oft als Minorante für das Zeigen der Divergenz einer Reihe benötigt.

Was ist die partialsumme?

Unter der n-ten Partialsumme sn einer Zahlenfolge (an) versteht man die Summe der Folgenglieder von a1 bis an. ... Eine Funktion, deren Defitionsbereich die Menge der natürlichen Zahlen (oder eine Teilmenge davon) ist und die eine Teilmenge der reellen Zahlen als Wertebereich besitzt, wird (reelle) Zahlenfolge genannt.

Was bedeutet alternierend Mathe?

Definition. Eine alternierende Reihe (englisch englisch alternating series) ist eine unendliche Reihe, deren Reihenglieder aus reellen Zahlen bestehen, die abwechselndes Vorzeichen haben. monoton fallend sein soll.

Wann ist eine Folge eine nullfolge?

In der Mathematik versteht man unter einer Nullfolge eine Folge (meist von reellen Zahlen), die gegen 0 konvergiert (sich annähert). Jede konvergente Folge kann als die Summe aus einer konstanten Zahl (nämlich ihrem Grenzwert) und einer Nullfolge dargestellt werden.

Was ist der Unterschied zwischen einer Reihe und einer Folge?

Eine Reihe ist eine Folge von Summen. also wenn du es ausgerechnet hast nur eine Zahl. in meinem Beispiel bis 3 dann eben bis unendlich. der Wert der unendlichen Reihe ist.

Wann ist eine Folge konvergent?

Grenzwert einer Folge von Elementen eines metrischen Raumes

Sind die Folgenglieder keine reellen Zahlen, sondern z. B. ... Eine Folge wird dann als konvergent gegen einen Grenzwert a definiert, wenn in jeder ε-Umgebung von a fast alle Folgenglieder liegen.

Ist eine Reihe konvergent?

In der Analysis ist ein Konvergenzkriterium ein Kriterium, mit dem die Konvergenz einer Folge oder Reihe bewiesen werden kann. Insbesondere sind damit Kriterien für die Konvergenz reeller Folgen oder Reihen gemeint. Mit einigen dieser Kriterien kann auch die Divergenz einer Folge oder Reihe nachgewiesen werden.

Wann konvergiert oder divergiert eine Folge?

Nicht konvergente Folgen heißen divergent. Konvergiert eine Folge nicht, so sagt man, sie divergiert. Eine Folge, die gegen Null konvergiert, heißt Nullfolge.

Was ist die alternierende Quersumme?

Man erhält die alternierende Quersumme einer Zahl, wenn man die Ziffern an den geraden Stellen und die an den ungeraden Stellen jeweils addiert und anschließend die Differenz bildet.

Was ist alternierend?

Alternierend bedeutet "abwechselnd" bzw. "wechselseitig".

Was ist ein alternierendes Metrum?

Speziell bezieht es sich auf den regelmäßigen Wechsel langer und kurzer Silben beim quantitierenden bzw. dem von betonten und unbetonten Silben beim akzentuierenden Versprinzip. ... Beginnt ein alternierender Vers mit einer langen oder betonten Silbe, so ergibt sich ein trochäisches Schema: —◡ | —◡ | —◡ | —◡ …

Was ist der Reihenwert?

Was ist ein Reihenwert bzw. ein Wert einer Reihe? ... hat so eine unendliche Reihe einen endlichen Wert, so nennt man diesen Reihenwert.