Was ist ein orthogonale?

Gefragt von: Isa Ritter  |  Letzte Aktualisierung: 11. Mai 2021
sternezahl: 4.9/5 (71 sternebewertungen)

Der Begriff Orthogonalität wird innerhalb der Mathematik in unterschiedlichen, aber verwandten Bedeutungen verwendet. In der Elementargeometrie nennt man zwei Geraden oder Ebenen orthogonal, wenn sie einen rechten Winkel, also einen Winkel von 90°, einschließen.

Was sind orthogonale Geraden?

In der Elementargeometrie nennt man zwei Geraden oder Ebenen orthogonal (bzw. senkrecht), wenn sie einen rechten Winkel, also einen Winkel von 90°, einschließen. In der linearen Algebra wird der Begriff auf allgemeinere Vektorräume erweitert: zwei Vektoren heißen zueinander orthogonal, wenn ihr Skalarprodukt null ist.

Wie sieht eine orthogonale aus?

Haben zwei Geraden verschiedene Richtungen, so schneiden sie einander in einem Punkt. Ein Sonderfall für Geraden verschiedener Richtungen sind zueinander senkrechte Geraden. Zwei Geraden g und h heißen zueinander senkrecht (orthogonal) genau dann, wenn sie sich unter einem rechten Winkel schneiden.

Wie misst man eine orthogonale?

Stehen die Geraden senkrecht zueinander, spricht man von orthogonalen Geraden. Steht g senkrecht zu h, dann schneiden sie sich im rechten Winkel. In diesem Fall können wir notieren: g ist senkrecht zu h. So, endlich am Ende.

Was sind orthogonale Linien?

Linien oder Liniensegmente, die an ihrem Schnittpunkt perpendikular sind, bezeichnet man als orthogonal bezogen. Ebenso werden zwei Vektoren als orthogonal betrachtet, wenn sie einen 90-Grad-Winkel bilden.

Was ist eine Orthogonale?

33 verwandte Fragen gefunden

Was ist die orthogonale Affinität?

Eine orthogonale Affinität ist in der Ebene (IR²) eine Abbildung, welche eine Koordinate eines Punktes gleich belässt und die andere mit einem Faktor k multipliziert. Bei der orthogonalen Affinität zur x-Achse (y-Achse) bleibt die x-Koordinate (y-Koordinate) gleich.

Wie berechnet man ob zwei Geraden orthogonal sind?

Wenn bei einem Schnittpunkt die beiden Geraden (lineare Graphen) senkrecht zueinander stehen, so spricht man von „orthogonal“ zueinander. In diesem besonderen Fall gilt m1 · m2 = -1 .

Wie viele zu V orthogonale Vektoren gibt es?

Da es keine weiteren Bedingungen gibt, können zwei Variablen beliebig festgelegt werden. Anschaulich gesehen, gibt es unendlich viele Vektoren, die zu einem einzigen gegebenen Vektor senkrecht stehen. Beispielsweise können x = 0 und y = - 5 festgelegt werden.

Wann sind zwei Geraden senkrecht zueinander?

Zwei Strecken oder Geraden stehen senkrecht aufeinander, wenn der Winkel zwischen ihnen 90° groß ist.

Was ist eine orthogonale Diagonale?

In der euklidischen Geometrie ist ein orthodiagonales Viereck ein Viereck, in dem sich die Diagonalen rechtwinklig kreuzen. Mit anderen Worten: Es ist eine vierseitige ebene Figur, in der die Verbindungslinien zwischen den nicht benachbarten Ecken orthogonal zueinander sind.

Was ist das Orthogonalitätskriterium?

Das Skalarprodukt im 3-dimensionalen Raum macht eine Aussage darüber, ob die beiden Geraden im rechten Winkel auf einander stehen.

Haben orthogonale Geraden die gleiche Steigung?

Bedingung für Orthogonalität

Stehen zwei Geraden senkrecht aufeinander, so kann man sich vorstellen, dass man die ursprüngliche Gerade um 90° auf die neue Gerade dreht. ... In Worten kann man also sagen: die Steigung der Orthogonalen ist gleich dem negativen Kehrwert der ursprünglichen Steigung.

Wann ist die transponierte gleich der inversen?

Eine orthogonale Matrix wird allgemein häufig mit dem Buchstaben bezeichnet. Die Inverse einer ortogonalen Matrix ist gleichzeitig ihre Transponierte. Das Produkt einer orthogonalen Matrix mit ihrer Transponierten ergibt die Einheitsmatrix.

Ist orthogonal zu?

Zwei Vektoren u und v heißen orthogonal zu einander, wenn ihr Skalarprodukt u · v = 0 bzw. uT · v = 0 Null ist. Zwei Unterräume V und W des Vektorraumes heißen orthogonal zu einander, wenn jeder Vektor v aus V und jeder Vektor w aus W orthogonal zu einander sind, d.h. ihr Skalarprodukt v · w = 0 bzw.

Wann sind Geraden normal zueinander?

Stecken oder Geraden, die einen rechten Winkel einschließen, heißen zueinander normal (oder orthogonal).

Was versteht man unter einer Geraden?

Eine gerade Linie oder kurz Gerade ist ein Element der Geometrie. Sie ist eine gerade, unendlich lange, unendlich dünne und in beide Richtungen unbegrenzte Linie. Die kürzeste Verbindung zweier Punkte wird hingegen als Strecke bezeichnet.

Wann sind 3 Vektoren orthogonal?

Da \vec{b}(t) und \vec{n}(t) auch senkrecht (orthogonal) zueinander sind und die Länge 1 aufweisen, bilden die drei Vektoren eine positiv orientierte Orthogonalbasis. Das bedeutet also, dass alle drei Vektoren senkrecht zueinander stehen.

Warum gibt es zu einem vorgegebenen Vektor beliebig viele Vektoren die zu diesem orthogonal sind?

Zwei Vektoren bezeichnet man immer dann als "orthogonal", wenn sie senkrecht zueinander liegen. Der von ihnen eingeschlossene Winkel muss also 90° sein. Daher auch das Wort orthogonal, welches aus dem griechischen stammt und dort für rechtwinklig steht. ... Ist es 0, so bilden die Vektoren einen rechten Winkel.

Wie viele Vektoren können zu einem Vektor orthogonal sein?

die Gleichung wir nun nach n gelöst, wobei dieser Vektor abhängig von einer Variablen c ist, da es unendlich viele orthogonale Vektoren gibt.