Was ist eine idempotente matrix?

Gefragt von: Hellmuth Wiese  |  Letzte Aktualisierung: 4. Dezember 2021
sternezahl: 4.9/5 (72 sternebewertungen)

Aus dem Englischen übersetzt-

Wann ist eine Matrix Idempotent?

Idempotente Matrix Definition

Eine quadratische Matrix A ist idempotent, wenn A2 = A (wenn also die Matrix A im Quadrat gleich der Matrix A ist.)

Was ist Idempotenz?

Ein wichtiger Spezialfall sind idempotente Funktionen bezüglich der Hintereinanderausführung. ... Analog dazu wird in der Informatik ein Stück Programmcode, das mehrfach hintereinander ausgeführt das gleiche Ergebnis wie bei einer einzigen Ausführung liefert, als idempotent bezeichnet.

Wann ist die transponierte gleich der inversen?

Eine orthogonale Matrix wird allgemein häufig mit dem Buchstaben bezeichnet. Die Inverse einer ortogonalen Matrix ist gleichzeitig ihre Transponierte. Das Produkt einer orthogonalen Matrix mit ihrer Transponierten ergibt die Einheitsmatrix. Die Determinante einer orthogonalem Matrix nimmt entweder den Wert oder an.

Wann ist eine Matrix symmetrisch?

Eine symmetrische Matrix ist in der Mathematik eine quadratische Matrix, deren Einträge spiegelsymmetrisch bezüglich der Hauptdiagonale sind. ... So ist eine reelle symmetrische Matrix stets selbstadjungiert, sie besitzt nur reelle Eigenwerte und sie ist stets orthogonal diagonalisierbar.

What is Idempotent Matrix?

29 verwandte Fragen gefunden

Wann ist eine Matrix Kommutativ?

Die Matrixmultiplikation ist nur dann kommutativ, wenn beide Matrizen Diagonalmatrizen sind.

Wann ist eine Matrix unitär?

Eine Matrix heißt unitär, wenn gilt: AAH=I (1) wobei gilt AH=ĀT (dh. dem komplex kojugierten Transponierten entspricht). Eine lineare Abbildung aus einem unitären Raum in sich selbst ist unitär, wenn ihre Matrix, bezüglich einer orthogonalen Basis, unitär ist.

Für welche Werte ist die Matrix symmetrisch?

Denition Eine reelle n ⇥ n-Matrix A heißt symmetrisch, wenn A = AT gilt. Alle Eigenwerte sind reell. Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal. Algebraische und geometrische Vielfalt eines jeden Eigenwerts sind gleich.

Was versteht man unter orthogonalen Matrizen?

Eine orthogonale Matrix ist in der linearen Algebra eine quadratische, reelle Matrix, deren Zeilen- und Spaltenvektoren orthonormal bezüglich des Standardskalarprodukts sind. Damit ist die Inverse einer orthogonalen Matrix gleichzeitig ihre Transponierte.

Kann eine Matrix gleich ihrer Transponierten sein?

Die Transponierte eines Produkts von Matrizen ist demnach gleich dem Produkt der Transponierten, jedoch in umgekehrter Reihenfolge.

Wann ist eine Matrix gleich ihrer inversen?

Eine Matrix A ist genau dann invertierbar, wenn gilt: det(A) ≠ 0 det ( A ) ≠ 0. Zu Matrizen, in denen Zeilen oder Spalten linear abhängig sind, deren Determinante also 0 beträgt, gibt es keine inversen Matrizen.