Was ist integralrechnung?
Gefragt von: Alex Haupt MBA. | Letzte Aktualisierung: 20. Februar 2021sternezahl: 4.6/5 (61 sternebewertungen)
Aus dem Englischen übersetzt-
Wie geht Integralrechnung?
Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der Analysis. Sie ist aus dem Problem der Flächen- und Volumenberechnung entstanden. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration.
Für was braucht man Integralrechnung?
Ingenieure müssen für ihre Konstruktionen die Flächen von Formen genauso berechnen, wie Hersteller von Produkten wissen müssen, wie viel von welchen Materialien gebraucht wird. Dies kann Integralrechnung leisten. Neben Schüsseln, Schalen und Pfeffermühlen sind aber auch noch andere Objekte Rotationskörper.
Was versteht man unter einem Integral?
Das Integral ist ein Oberbegriff für das bestimmtes und unbestimmtes Integral. Ein bestimmtes Integral liefert einen Zahlenwert, während ein unbestimmtes Integral eine Funktion liefert. ... Das bestimmte Integral berechnet nämlich die Fläche zwischen dem Graph einer Funktion und der x-Achse.
Wer hat das Integral erfunden?
Der Begriff Integral geht auf Johann Bernoulli zurück. Im 19. Jahrhundert wurde die gesamte Analysis auf ein solideres Fundament gestellt. 1823 entwickelte Augustin-Louis Cauchy erstmals einen Integralbegriff, der den heutigen Ansprüchen an Stringenz genügt.
Integrieren Grundlagen (Integral) - Basics
16 verwandte Fragen gefunden
Wer hat die Ableitung erfunden?
Ende des 17. Jahrhunderts gelang es Isaac Newton und Gottfried Wilhelm Leibniz unabhängig voneinander, widerspruchsfrei funktionierende Kalküle zu entwickeln (zur Entdeckungsgeschichte und zum Prioritätsstreit siehe Geschichte der Infinitesimalrechnung).
Warum ist das Integral die Fläche?
das Integral ist die Fläche, weil man wissen wollte, wie die Fläche ist. Daraufhin entwarf man das Integral. PS: In http://de.wikipedia.org/wiki/Riemannsches_Integral sind die ersten sechs Zeilen auch für Laien noch einigermaßen verständlich formuliert.
Woher weiß ich ob ein Integral positiv oder negativ ist?
Flächen oberhalb der x-Achse sind positiv, Flächen unterhalb der x-Achse sind negativ. Orientierte Fläche bedeutet: Liegt die Fläche oberhalb der x-Achse, so ist das bestimmte Integral positiv. Liegt die Fläche unterhalb der x-Achse so ist das bestimmet Integral negativ.
Was ist die Integrationsvariable?
Bei der Integralrechnung wird die Fläche S unter einer Funktion F(x) innerhalb der Integrationsgrenzen (a,b) bestimmt. Das Integral ergibt sich durch Subtraktion der Stammfunktionen F an der oberen von der unteren Grenze. Die zu integrierende Funktion f(x) heißt Integrand. Das x ist dabei die Integrationsvariable.
Was bedeutet es wenn das Integral 0 ist?
Der Wert des bestimmten Integrals wird 0, wenn die eingeschlossenen Flächeninhalte über und unter der x-Achse genau gleich groß sind. als Summe von Produkten . Gleichen sich die positiven und negativen Funktionswerte aus, so ergibt die Summe insgesamt 0.
Warum integrieren?
Die Umkehrung der Ableitung nennt man Integration. Durch das Integrieren der Funktion f(x) entsteht die Stammfunktion F(x). Die Integralrechnung dient außerdem dazu die Fläche unter einer Funktion berechnen zu können.
Ist ein Integral immer positiv?
alle integrale oberhalb sind positiv, die unterhalb sind negativ. aber geht es rein um den flächeninhalt, so ist dieser immer positiv zu rechnen, daher der betrag.
Was bedeutet die stammfunktion im Sachzusammenhang?
Nun ja: Was die Stammfunktion im Sachzusammenhang aussagt, hängt eben vom Sachzusammenhang ab. Das Integral der Geschwindigkeit über die Zeit ist zum Beispiel der Weg. In einem anderen Sachzusammenhang bedeutet es etwas völlig anderes. ... Stammfunktion einer Funktion.
Wann lernt man Integralrechnung?
der durchschnittliche Schüler lernt das in Deutschland laut Lehrplan im Alter von 17 Jahren plus minus 1.
Wie zeichnet man die Obersumme ein?
Aus der Monotonie der Funktion erhält man, dass an der Stelle x 0 = 1 \sf x_0=1 x0=1 der maximale Funktionswert f ( x 0 ) = 1 \sf f(x_0)=1 f(x0)=1 des Intervalls angenommen wird. Für die Obersumme gilt somit: O ( 1 ) = x 0 ⋅ f ( x 0 ) = 1 ⋅ 1 = 1 \sf O(1)=x_0 \cdot f(x_0)=1 \cdot 1=1 O(1)=x0⋅f(x0)=1⋅1=1.
Wie kann man Aufleiten?
...
Es folgen Beispiele:
- f(x) = 2 -> F(x) = 2x + C.
- f(x) = 5 -> F(x) = 5x + C.
- f(x) = 8 -> F(x) = 8x + C.
Kann das Integral negativ sein?
Der Wert des bestimmten Integrals wird negativ, wenn der Flächeninhalt der Funktion unter der x-Achse größer ist, als jener über der x-Achse. ... Wenn es dabei negative f(x) Werte gibt, so kann der Wert des bestimmten Integrals negativ werden.
Was gibt der flächeninhalt an?
Der Flächeninhalt ist ein Maß für die Größe einer Fläche. Unter Fläche versteht man dabei zweidimensionale Gebilde, das heißt solche, in denen man sich in zwei unabhängige Richtungen bewegen kann. ... Die Ausmessung von Flächeninhalten geschieht in der Regel nicht direkt.
Was gibt uns die stammfunktion an?
Unter der Stammfunktion einer Funktion f (x) versteht man die Funktion F (x), deren Ableitung F '(x) mit f (x) übereinstimmt. Die Stammfunktion F (x) ist demnach die Aufleitung von f (x). Mathematisch stellt man diesen Sachverhalt foglendermaßen dar. Es gibt zu jeder stetigen Funktion f (x) eine Stammfunktoin F (x).