Was ist integralrechnung einfach?

Gefragt von: Brigitta Lauer  |  Letzte Aktualisierung: 3. Juni 2021
sternezahl: 4.2/5 (10 sternebewertungen)

Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der Analysis. Sie ist aus dem Problem der Flächen- und Volumenberechnung entstanden. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration.

Wie geht Integralrechnung?

Erklärungen: Die Funktion wird zunächst integriert. Die Stammfunktion wird in Klammern gesetzt und die Integrationsgrenzen werden an diese angetragen. Danach wird die Funktion ausgerechnet mit dem oberen Grenzwert: Setzt man die 1 in die Gleichung ein, erhält man ein Drittel. Danach wird ein minus "-" gesetzt".

Was macht man mit dem Integral?

Die Integralrechnung steht in engem Zusammenhang mit der Differentialrechnung. Die Integralrechnung ist motiviert durch die Berechnung von Flächeninhalten, die eine krummlinige Grenze haben. Das bestimmte Integral berechnet nämlich die Fläche zwischen dem Graph einer Funktion und der x-Achse.

Was versteht man unter einer stammfunktion?

Unter der Stammfunktion einer Funktion f (x) versteht man die Funktion F (x), deren Ableitung F '(x) mit f (x) übereinstimmt. Die Stammfunktion F (x) ist demnach die Aufleitung von f (x). Mathematisch stellt man diesen Sachverhalt foglendermaßen dar. Es gibt zu jeder stetigen Funktion f (x) eine Stammfunktoin F (x).

Was versteht man unter einer Stammfunktion F von f?

Stammfunktionen einer Funktion

F2 ist genau dann eine Stammfunktion von f, wenn es eine Zahl C (C∈ℝ) gibt, so dass F2(x)=F1(x)+C für alle x∈D gilt.

Integrieren Grundlagen (Integral) - Basics

15 verwandte Fragen gefunden

Was bringt mir die stammfunktion?

Stammfunktionen braucht man, um Flächen zwischen Funkionen zu berechnen. Im Gegensatz zu Ableitungen, wo man jede Funktion ableiten kann, kann man nicht jede Funktion integrieren [= „aufleiten“ = „Stammfunktion bilden“]. Im Allgemeinen kann man keine Produkte und keine Brüche integrieren.

Für was braucht man die differentialrechnung?

Wozu braucht man die Differenzialrechnung? In Mathe kommt die Differenzialrechnung vor allem bei der Kurvendiskussion in der Analysis vor. Dort hilft sie dir, die Extrem- und Wendepunkte zu bestimmen und das Monotonie- bzw. Krümmungsverhalten zu untersuchen.

Was gibt das Integral im Sachzusammenhang an?

Bestimmtes Integral im Sachzusammenhang

Beschreibt eine Funktion f die momentane Änderungsrate einer Größe in Abhängigkeit von der Zeit t , so errechnet das bestimmte Integral ∫t2t1f(t)dt ∫ t 1 t 2 f ( t ) d t den Wert der Gesamtänderung der Größe im Zeitintervall [t1;t2] [ t 1 ; t 2 ] .

Wann wendet man Integralrechnung an?

Ingenieure müssen für ihre Konstruktionen die Flächen von Formen genauso berechnen, wie Hersteller von Produkten wissen müssen, wie viel von welchen Materialien gebraucht wird. Dies kann Integralrechnung leisten. Neben Schüsseln, Schalen und Pfeffermühlen sind aber auch noch andere Objekte Rotationskörper.

Wie funktioniert die differentialrechnung?

Differentialrechnung: Die Steigung
  1. Wählt einen ersten Punkt auf der Gerade aus. ...
  2. Wählt einen zweiten Punkt auf der Gerade aus: Punkt 2: X = 2 und Y = 1.
  3. Bildet ΔY: Den zweiten Y-Punkt minus dem ersten Y-Punkt: 3 - 1 = 2.
  4. Bildet ΔX: Den zweiten X-Punkt minus dem ersten X-Punkt: 6 - 2 = 4.

Was sagt der Wert eines Integrals aus?

Den Wert eines bestimmten Integrals über eine Funktion f berechnet man, indem man ihre Stammfunktion an den beiden Integrationsgrenzen auswertet und die Differenz der beiden bildet ("obere Grenze minus untere Grenze"). Die Konstante C, die in der allgemeinen Stammfunktion steht, fällt hierbei weg (hebt sich auf).

Warum gibt es mehrere Stammfunktionen?

Es gibt immer unendlich viele Stammfunktionen der Form F(x) + c einer gegebenen Funktion f(x), da die Ableitung einer solchen Stammfunktion immer wieder f(x) ergibt. Konstanten werden ja zu null abgeleitet.

Kann das Integral negativ sein?

Der Wert des bestimmten Integrals wird negativ, wenn der Flächeninhalt der Funktion unter der x-Achse größer ist, als jener über der x-Achse. ... Wenn es dabei negative f(x) Werte gibt, so kann der Wert des bestimmten Integrals negativ werden.

Für was braucht man Ableitungen?

Wofür braucht man Ableitungen? Die erste Ableitung gibt die Steigung einer Funktion an. Hat man eine Funktion gegeben, dann kann man aus der Ableitung zum Beispiel ablesen, wann die Funktion am stärksten steigt bzw. gar nicht steigt und kann dadurch Rückschlüsse ziehen, wie der Funktionsgraph aussieht.

Was beinhaltet differentialrechnung?

Teilgebiet der Mathematik, das sich mit der Steigung von Funktionen beschäftigt. Sie stellt einfache Methoden zur Berechnung der Steigung zur Verfügung (Differenzierungsregeln). ... Durch den Differenzialquotienten kann die Ableitung f ', die die Steigung der Funktion f angibt, bestimmt werden.

Was gehört alles zur differentialrechnung?

Zusammenfassung zur Differentialrechnung
  • Extrema (lokale bzw. relative)
  • Monotonie.
  • Krümmung.
  • Wendepunkt.

Wie gibt man eine Stammfunktion an?

Die Funktion F(x) ist eine Stammfunktion von f(x) wenn F'(x) = f(x) erfüllt ist. Es gibt zu jeder stetigen Funktion f(x) unendlich viele Stammfunktionen. Dabei unterscheiden sich die Stammfunktionen durch unterschiedliche Konstanten.

Warum stammfunktion bei Integral?

Stammfunktionen braucht man, um Flächen zwischen Funkionen zu berechnen. Im Gegensatz zu Ableitungen, wo man jede Funktion ableiten kann, kann man nicht jede Funktion integrieren [= „aufleiten“ = „Stammfunktion bilden“]. Im Allgemeinen kann man keine Produkte und keine Brüche integrieren.