Was ist punktsymmetrisch zum ursprung?

Gefragt von: Sieglinde Mai  |  Letzte Aktualisierung: 13. Mai 2021
sternezahl: 4.4/5 (16 sternebewertungen)

Eine Funktion y = f(x) mit einem symmetrischen Definitionsbereich D heißt ungerade, wenn für jedes x ε D die Bedingung f(-x) = -f(x) erfüllt ist. In diesem Fall ist die Funktion auch punktsymmetrisch zum Koordinatenursprung.

Was bedeutet symmetrisch zum Ursprung?

Als punktsymmetrisch werden Körper bezeichnet, die aus zwei Hälften bestehen, wobei die eine Hälfte durch Drehung um 180° die andere Hälfte überdeckt. Punktsymmetrisch sind zum Beispiel die Buchstaben „N“ und „Z“ oder ein Parallelogramm.

Wie erkennt man Punktsymmetrie zum Ursprung?

Die Funktion f(x) = x2 + x soll auf eine Punktsymmetrie zum Ursprung untersucht werden. Dazu ermitteln wir zunächst f(-x) und -f(x). Danach setzen wir f(-x) = -f(x). Ist die Gleichung korrekt, dann liegt eine Punktsymmetrie vor.

Was ist die punktsymmetrie?

Was bedeutet punktsymmetrisch? Eine Figur ist punktsymmetrisch, wenn du sie um 180° drehen kannst, ohne dabei ihr Aussehen zu verändern.

Wann ist eine potenzfunktion punktsymmetrisch zum Ursprung?

Der Graph der allgemeinen Potenzfunktion g mit g(x)=116x3 ist punktsymmetrisch zum Koordinatenursprung. Es gilt: g(-4)=-4=-g(4) .

Achsen-/Punktsymmetrie, Graphische Übersicht | Mathe by Daniel Jung

18 verwandte Fragen gefunden

Wie erkennt man eine potenzfunktion?

Eine Potenzfunktion f (mit natürlichem Exponenten) ist eine Funktion mit einem Funktionsterm der Form f(x)=xn . Die natürliche Zahl n ist der Grad der Potenzfunktion, man spricht auch von einer Potenzfunktion vom Grad n . Eine allgemeine Potenzfunktion f hat einen Funktionsterm der Form f(x)=axn .

Wie überprüfe ich ob ein Graph Punktsymmetrisch ist?

Punkten gibt es einfache Formeln um Symmetrie nachzuweisen: Bei einer Achsensymmetrie zur y-Achse muss gelten: f ( − x ) = f ( x ) \sf f(-x)=f(x) f(−x)=f(x) Bei Punktsymmetrie zum Ursprung muss gelten: f ( − x ) = − f ( x ) \sf f(-x)=-f(x) f(−x)=−f(x)

Wie erkennt man Achsensymmetrie und punktsymmetrie?

Symmetrie nachweisen

Um eine Funktion f(x) auf Symmetrie zu untersuchen, bildest du als erstes f(−x). Lässt sich dieser Ausdruck in f(x) umformen, ist der Graph achsensymmetrisch zur y-Achse. Lässt sich dieser Ausdruck dagegen in −f(x) umformen, ist der Graph punktsymmetrisch zum Ursprung.

Wann ist ein kreisbild Punktsymmetrisch?

Kreisbilder können auch punktsymmetrisch sein. Eine Figur ist punktsymmetrisch, wenn sie durch eine halbe Drehung in sich selbst überführt werden kann. Der Punkt, um den die Figur gedreht wird, heßt dann Symmetriepunkt.

Welche sieben Buchstaben sind Punktsymmetrisch?

Die Buchstaben N, X, S sind punktsymmetrisch, die Buchstaben A, C, R sind es nicht. In der Analysis interessiert oft die Punktsymmetrie von Funktionsgraphen bezüglich des Koordinatenursprungs.

Wie sieht Achsensymmetrie aus?

Das erste Symmetrieverhalten das wir uns nun ansehen ist die Achsensymmetrie. Die Funktionskurve einer geraden Funktion ist spiegelsymmetrisch zur Y-Achse angeordnet. Dies bedeutet, dass jeder auf der Kurve gelegene Punkt durch Spiegelung an der Y-Achse wieder in einen Kurvenpunkt übergeht.

Wann ist es Achsensymmetrisch?

Eine Figur heißt achsensymmetrisch, wenn sie durch die senkrechte Achsenspiegelung an ihrer Symmetrieachse auf sich selbst abgebildet wird. Im Falle einer zweidimensionalen Figur ist Achsensymmetrie gleichbedeutend mit Spiegelsymmetrie.

Wann ist eine Funktion 3 Grades punktsymmetrisch zum Ursprung?

Grades ist punktsymmetrisch zum Ursprung. Bestimme die maximale Steigung der Kurve.

Was ist der Ursprung bei einer Funktion?

Der Ursprung ist der Koordinatennullpunkt eines Koordinatensystems, also der Punkt O(0|0) bzw. O(0|0|0). Der Großbuchstabe „O“ kommt daher, dass Ursprung auf Lateinisch „origo“ heißt – ist das runde Zeichen in der Mitte eines Achsenkreuzes ist also offiziell keine Null, sondern ein O!

Wann ist eine Funktion symmetrisch zur Y-Achse?

Die Funktionskurve einer geraden Funktion ist spiegelsymmetrisch zur Y-Achse angeordnet. Dies bedeutet, dass jeder auf der Kurve gelegene Punkt durch Spiegelung an der Y-Achse wieder in einen Kurvenpunkt übergeht. Mathematisch findet man solch eine Funktion wenn gilt: f(-x) = f(x).

Wann ist eine Ganzrationale Funktion punktsymmetrisch zum koordinatenursprung?

ganzrationale Funktionen, die zum Ursprung punktsymmetrisch sind, haben ausschließlich ungerade Exponenten und kein Absolutglied. rechnerischer Nachweis: $f(-x)=-f(x)$

Wie wird die Symmetrie am Graphen untersucht?

Man kann eine Funktion auf ihr Symmetrieverhalten untersuchen, indem man einfach f(-x) ausrechnet und vergleicht, ob das Ergebnis mit f(x) oder -f(x) übereinstimmt. Dabei muss für x auch -x gelten. Eine Funktion kann natürlich nicht nur bezüglich der Y-Achse, bzw. des Ursprungs ein Symmetrieverhalten zeigen.

Woher weiß man ob eine Funktion symmetrisch ist?

Bei ganzrationalen Funktionen schaut man nur auf die Hochzahlen von „x“. Gibt es nur gerade Hochzahlen, ist f(x) symmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, ist f(x) symmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, ist f(x) nicht symmetrisch.