Was ist sekundärstruktur?

Gefragt von: Nico Jäger-Heck  |  Letzte Aktualisierung: 30. April 2021
sternezahl: 4.2/5 (35 sternebewertungen)

Als Sekundärstrukturen werden in der Biochemie regelmäßige lokale Strukturelemente von Makromolekülen bezeichnet. Der Fokus liegt dabei auf dem Polymerrückgrat, auch Backbone genannt. Die Konformation der Seitenketten und ihr Verhältnis zu anderen Elementen werden außer Acht gelassen.

Was versteht man unter der Sekundärstruktur eines Proteins?

Die Sekundärstruktur von Biopolymeren wie Proteinen, Nukleinsäuren und Polysacchariden beschreibt die relative Anordnung ihrer monomeren Bausteine. Sie ist bestimmt durch die von Wasserstoffbrücken zwischen einzelnen Elementen definierten Topologie, sowie durch die Primärstruktur.

Was versteht man unter dem Begriff sekundärstruktur?

Als Sekundärstrukturen werden in der Biochemie regelmäßige lokale Strukturelemente von Makromolekülen bezeichnet. ... Eine Sekundärstruktur geht aus der jeweiligen Primärstruktur hervor. Die topologische Anordnung der Atome im Raum wird durch die Bildung von Wasserstoffbrücken zwischen den Atomen festgelegt.

Welche Sekundärstruktur bildet die DNA?

Auch Nukleinsäuren, also DNA und RNA, können Sekundärstrukturen bilden. Voraussetzung hierfür ist, dass das Nukleinsäuremolekül zunächst als Einzelstrang vorliegt. Komplementäre Abschnitte können dann Wasserstoffbrücken ausbilden, was zur Bildung von intramolekularen Doppelsträngen führt.

Was versteht man unter einer Quartärstruktur eines Proteins?

Wenn sich mehrere Proteinmoleküle (Aminosäureketten) zu einem funktionellen Komplex zusammenlagern, spricht man von einer Quartärstruktur. ... Aber nicht alle Proteine besitzen eine Quartärstruktur; in der Natur kommen zahlreiche einsträngige Proteine vor, die keine dauerhaften Komplexe bilden.

Proteine - Bau & Struktur einfach erklärt - Genetik & Stoffwechselbiologie

20 verwandte Fragen gefunden

Was gehört zur quartärstruktur?

Eine Quartärstruktur bezeichnet in der Biochemie die definierte Anordnung von zwei oder mehr Makromolekülen mit jeweiliger Tertiärstruktur, die durch Wasserstoffbrücken, Van-der-Waals-Kräfte und Coulombsche Kräfte zusammengehalten werden.

Was stabilisiert die quartärstruktur?

Quartärstruktur: Sie beschreibt die räumliche Anordnung mehrerer Polypeptidketten zueinander unter Ausbildung eines Gesamtkomplexes. Die Quartärstruktur wird stabilisiert durch Wechselwirkungen/zwischenmolekulare Kräfte der Aminosäurereste: Ionenbindungen, Disulfidbrücken, H-Brücken, Van-der-Waals-Kräfte.

Was hält die sekundärstruktur zusammen?

Als Sekundärstruktur bezeichnet man die Zusammensetzung des Proteins aus besonders häufig auftretenden Motiven für die räumliche Anordnung der Aminosäuren, z. B.: α-Helix und β-Faltblatt. Diese Strukturen ergeben sich durch Wasserstoffbrückenbindungen zwischen den Peptidbindungen des Polypeptid-Rückgrates.

Wie viele Basenpaare hat die DNA?

Etwa 3 Milliarden Basenpaare besitzt das menschliche Genom. Diese Zahl ist seit Längerem bekannt, unbekannt ist dagegen die Anzahl der codierenden Abschnitte oder Gene in unserer Erbsubstanz.

Wie viele Basen sind in der DNA?

In der Molekularbiologie spielen die sogenannten Nukleinbasen (auch: Nukleobasen) eine besondere Rolle: Sie sind die Bausteine, aus denen die DNA und die RNA zusammengesetzt sind. In der DNA kommen vier verschiedene Basen vor: Adenin (A), Cytosin (C), Guanin (G) und Thymin (T).

Wie heißen die beiden typischen Sekundärstrukturen von Proteinen?

Die Hirachie der Strukturebenen

Sekundärstruktur – die räumliche Struktur eines lokalen Bereiches im Protein (z.B. α-Helix, β-Faltblatt). Tertiärstruktur – die räumliche Struktur des einzelnen Proteins bzw. einer Untereinheit.

Warum tertiärstruktur wichtig?

Für die biologische Funktion von Polymeren, insbesondere bei Proteinen, ist die Tertiärstruktur unerlässlich. Proteine haben verschiedene wichtige Funktionen, z.B. als Katalysatoren (Enzyme), Hormone oder Rezeptoren. Wird die Tertiärstruktur eines Proteins zerstört, wird auch die Funktion des Proteins zerstört.

Wie entsteht die primärstruktur?

Primärstruktur. Als Primärstruktur wird die Abfolge der Aminosäuren in der oben beschriebenen Aminosäurekette bezeichnet. Diese Sequenz ist durch den genetischen Code festgelegt und die einzelnen Aminosäuren kovalent verknüpft.

Warum haben Proteine verschiedene Strukturen?

In einem Protein sind die einzelnen Bausteine, die Aminosäuren, kovalent zu einer langen Polypeptid-Kette verknüpft. Unter Primärstruktur versteht man die Reihenfolge der Aminosäuren, die Sequenz. Die Sekundärstruktur beschreibt die räumliche Anordnung nah benachbarter Aminosäuren.

Welche Kräfte wirken in der primärstruktur?

Ursache für diese Vielfalt ist die Faltung der reinen Primärkette (Primärstruktur) durch Innermolekulare Wechselwirkungen (Dipol-Dipol-Kräfte, Van-der-Waals Kräfte, Disulfidbrücken, Wasserstoffbrückenbindungen).

Wie kann man Proteine denaturieren?

Physikalisch kann Denaturierung daneben auch durch hohen Druck, starkes Rühren, Schütteln, durch Ultraschalleinwirkung und durch Grenzflächenabsorption hervorgerufen werden.
  1. Hitzedenaturierung.
  2. Denaturierung durch Druck.
  3. Denaturierung durch Strahlung.
  4. Säure- und Lauge-Denaturierung.
  5. Denaturierung durch Chaotrope.

Was hält die Primärstruktur zusammen?

Unter Primärstruktur versteht man in der Biochemie die unterste Ebene der Strukturinformation eines Biopolymers, d.h. die Sequenz der einzelnen Bausteine. Bei Proteinen ist dies die Abfolge der Aminosäuren (Aminosäuresequenz), bei Nukleinsäuren (DNA und RNA) die der Nukleotide (Nukleotidsequenz).

Was hält Aminosäuren zusammen?

Die Peptidbindung ist eine Säureamidbindung, bei der also die nucleophil angreifende Aminogruppe der Aminosäure 2 und die Carboxylgruppe der Aminosäure 1 mit einander verknüpft werden.

Was hält Proteine zusammen?

Seitenketten mit Carboxyl-, Hydroxyl- oder Aminogruppen, wie sie in einigen Aminosäuren vorkommen, können untereinander Wasserstoffbrücken-Bindungen eingehen. Auch dadurch wird die Tertiärstruktur eines Protein stabilisiert.