Was ist untervektorraum?
Gefragt von: Arne Jordan | Letzte Aktualisierung: 17. Januar 2021sternezahl: 4.3/5 (72 sternebewertungen)
Ein Untervektorraum, Teilvektorraum, linearer Unterraum oder linearer Teilraum ist in der Mathematik eine Teilmenge eines Vektorraums, die selbst wieder einen Vektorraum darstellt. Dabei werden die Vektorraumoperationen Vektoraddition und Skalarmultiplikation von dem Ausgangsraum auf den Untervektorraum vererbt.
Wann ist eine Menge ein untervektorraum?
Zur Definition eines Untervektorraums U gehört also die Angabe eines Vektorraums V, von dem U eine Teilmenge ist, also U⊆V. ... Das bedeutet, dass man aus dem Untervektorraum durch Addition von Vektoren und Multiplikation mit Zahlen nicht “herauskommt”, also immer wieder ein Vektor des Untervektorraums entsteht.
Ist die leere Menge ein untervektorraum?
und seine Basis ist die leere Menge. Jeder Vektorraum enthält den Nullvektorraum als kleinstmöglichen Untervektorraum. Bezüglich der direkten Summe und des direkten Produkts von Vektorräumen wirkt der Nullvektorraum als neutrales Element.
Kann der nullvektor ein untervektorraum sein?
Der Nullvektor ist in der Mathematik ein spezieller Vektor eines Vektorraums, und zwar das eindeutig bestimmte neutrale Element bezüglich der Vektoraddition. ... Jeder Untervektorraum eines Vektorraums enthält zumindest den Nullvektor, wobei der kleinste Untervektorraum der Nullvektorraum ist.
Was ist die Basis eines Vektorraums?
In der linearen Algebra ist eine Basis eine Teilmenge eines Vektorraumes, mit deren Hilfe sich jeder Vektor des Raumes eindeutig als endliche Linearkombination darstellen lässt. Die Koeffizienten dieser Linearkombination heißen die Koordinaten des Vektors bezüglich dieser Basis. Ein Element der Basis heißt Basisvektor.
Was ist ein Untervektorraum?
32 verwandte Fragen gefunden
Was ist die Basis einer Matrix?
Unter dem Spaltenraum einer Matrix A versteht man die Menge aller Linearkombinationen der Spalten von A, dargestellt als Ax. ... Eine Basis eines Vektorraumes ist eine Menge von Vektoren, die zwei Eigenschaften erfüllt: Die Vektoren sind linear unabhängig. Die Vektoren spannen den Raum auf.
Was ist die Basis?
1) allgemein: Grundlage. 2) allgemein: Ausgangspunkt oder Stützpunkt zu verschiedenen Operationen, wie Rettungs- und Militäreinsätze, Bergsteigen. 3) Architektur Sockel einer Säule oder eines Pfeilers. 4) Mathematik Term in einer Potenz, der potenziert wird.
Welche Dimension hat der nullvektor?
Man bezeichnet dann V auch als einen m–dimensionalen Vektorraum. Dem Nullvektorraum (das ist ein Vektorraum , der nur aus dem Nullvektor besteht) wird die Dimension 0 zugewiesen.
Wann ist ein kreuzprodukt 0?
Wenn das Skalarprodukt zweier Vektoren 0 0 0 ergibt, bedeutet dies, dass die Vektoren orthogonal, also senkrecht, zueinander sind. Der resultierende Vektor des Kreuzproduktes zweier Vektoren a ⃗ \vec a a und b ⃗ \vec b b steht also senkrecht auf den beiden Vektoren.
Was ist der nullraum?
Mit Nullraum wird in der Mathematik bezeichnet: der Kern einer linearen Abbildung, siehe Kern (Algebra) ein Vektorraum, der nur aus dem Nullvektor besteht, siehe Nullvektorraum.
Wie zeigt man lineare Unabhängigkeit?
Eine Menge von Vektoren ist linear abhängig, wenn man eine Linearkombination von ihnen bilden kann, die den Nullvektor ergibt und nicht trivial ist (trivial wäre, einfach von allen Vektoren das Nullfache zu nehmen). Geht das nicht, so sind sie linear unabhängig.
Was bedeutet lineare Abbildung?
Eine lineare Abbildung (auch lineare Transformation oder Vektorraumhomomorphismus genannt) ist in der linearen Algebra ein wichtiger Typ von Abbildung zwischen zwei Vektorräumen über demselben Körper.
Ist der Vektor Element des vektorraums?
Ein Vektorraum ist eine algebraische Struktur (eine Menge mit Verknüpfungsgebilden). Die Elemente eines Vektorraums werden Vektoren genannt. Sie können beliebig addiert oder mit Zahlen multipliziert werden, wobei das Ergebnis ein Vektor desselben Vektorraums ist.
Was sagt das Kreuzprodukt aus?
Das Vektorprodukt ist die Verknüpfung zweier Vektoren, dessen Ergebnis wieder ein Vektor ist, der senkrecht auf den beiden Vektoren steht. Häufig wird das Vektorprodukt auch mit "Kreuzprodukt" bezeichnet.
Wann sind zwei Vektoren orthogonal zueinander?
Zwei Vektoren sind somit zueinander orthogonal, wenn ihr Skalarprodukt gleich null ist. Der Nullvektor ist dabei zu allen Vektoren orthogonal.
Wann skalarprodukt und kreuzprodukt?
Das Skalarprodukt ist eine Multiplikation von zwei Vektoren. Sein Ergebnis ist ein Skalar (= eine reelle Zahl), im Gegensatz zum Kreuzprodukt, dessen Ergebnis ein Vektor ist.
Ist 0 0 0 ein Vektor?
Ein besonderer Fall eines Vektors ist der Nullvektor: →v=(00). Einen Pfeil zu zeichnen, der diesen Vektor repräsentiert, ist natürlich nicht möglich, denn der Nullvektor zeigt in keine Richtung und hat die Länge Null.
Ist der nullvektor immer linear abhängig?
In der linearen Algebra wird eine Familie von Vektoren eines Vektorraums linear unabhängig genannt, wenn sich der Nullvektor nur durch eine Linearkombination der Vektoren erzeugen lässt, in der alle Koeffizienten der Kombination auf den Wert null gesetzt werden.
Ist die leere Menge linear unabhängig?
Eine Menge von Vektoren, die nicht linear abhängig ist, heißt linear unabhängig. ... Bemerkung: Die leere Menge ist linear unabhängig, denn es gibt keine Vektoren in der leeren Menge, durch die sich der Nullvektor darstellen lässt. Dagegen ist jede Menge, die den Nullvektor enthält, linear abhängig.
Was ist die Basis und der Exponent?
Eine Potenz besteht aus einer Basis, einem Exponenten, der oben rechts an die Basis geschrieben wird, und dem Ergebnis, das man auch Potenzwert nennt. ... Der Exponent als Zahl ist nicht direkt Bestandteil der Rechnung, sondern steht lediglich für die Anzahl der Multiplikationen der Basis mit sich selbst.