Was sind integrale?

Gefragt von: Bianka Schenk  |  Letzte Aktualisierung: 10. April 2021
sternezahl: 4.7/5 (62 sternebewertungen)

Aus dem Englischen übersetzt-

Was wird mit Integral berechnet?

Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der Analysis. Sie ist aus dem Problem der Flächen- und Volumenberechnung entstanden. Das Integral ist ein Oberbegriff für das unbestimmte und das bestimmte Integral. Die Berechnung von Integralen heißt Integration.

Für was braucht man Integrale?

Ingenieure müssen für ihre Konstruktionen die Flächen von Formen genauso berechnen, wie Hersteller von Produkten wissen müssen, wie viel von welchen Materialien gebraucht wird. Dies kann Integralrechnung leisten. Neben Schüsseln, Schalen und Pfeffermühlen sind aber auch noch andere Objekte Rotationskörper.

Was gibt das Integral im Sachzusammenhang an?

Bestimmtes Integral im Sachzusammenhang

Beschreibt eine Funktion f die momentane Änderungsrate einer Größe in Abhängigkeit von der Zeit t , so errechnet das bestimmte Integral ∫t2t1f(t)dt ∫ t 1 t 2 f ( t ) d t den Wert der Gesamtänderung der Größe im Zeitintervall [t1;t2] [ t 1 ; t 2 ] .

Wie funktionieren Integrale?

Genaugenommen ist ein Integral nicht die Fläche unter einem Funktionsgraphen sondern genauer gesagt die Fläche zwischen Funktionsgraph und der Diagrammachse. Befindet sich der Funktionsgraph auf der positiven Seite (also oberhalb der Achse), zählt die Fläche als positiv.

Integrieren Grundlagen (Integral) - Basics

16 verwandte Fragen gefunden

Wie kann man Aufleiten?

"Aufleitung" sind umgangssprachlich. Er wird von vielen Schülern einfach als das Gegenteil von Ableiten angesehen. In der Mathematik spricht man bei diesem Bereich richtigerweise von Integration bzw.
...
Es folgen Beispiele:
  1. f(x) = 2 -> F(x) = 2x + C.
  2. f(x) = 5 -> F(x) = 5x + C.
  3. f(x) = 8 -> F(x) = 8x + C.

Wie integriere ich richtig?

Die Umkehrung der Ableitung nennt man Integration. Hier geht man den entgegengesetzten Weg und man schließt von f''(x) auf f'(x) und weiter auf f(x). Liegt bereits f(x) vor und man integriert erneut, erhält man F(x). Leitet man hingegen F(x) wieder ab erhält man f(x).

Was gibt uns die stammfunktion an?

Unter der Stammfunktion einer Funktion f (x) versteht man die Funktion F (x), deren Ableitung F '(x) mit f (x) übereinstimmt. Die Stammfunktion F (x) ist demnach die Aufleitung von f (x). Mathematisch stellt man diesen Sachverhalt foglendermaßen dar. Es gibt zu jeder stetigen Funktion f (x) eine Stammfunktoin F (x).

Was bedeutet die stammfunktion im Sachzusammenhang?

Nun ja: Was die Stammfunktion im Sachzusammenhang aussagt, hängt eben vom Sachzusammenhang ab. Das Integral der Geschwindigkeit über die Zeit ist zum Beispiel der Weg. In einem anderen Sachzusammenhang bedeutet es etwas völlig anderes. ... Stammfunktion einer Funktion.

Wieso ist die integralfunktion eine stammfunktion?

Jede Integralfunktion I von f ist nach dem HDI auch eine Stammfunktion von f. Umgekehrt: Hat eine Stammfunktion F keine Nullstelle, dann ist F auch keine Integralfunktion. Denn: Jede Integralfunktion hat mindestens eine Nullstelle! .

Für was braucht man die differentialrechnung?

Wozu braucht man die Differenzialrechnung? In Mathe kommt die Differenzialrechnung vor allem bei der Kurvendiskussion in der Analysis vor. Dort hilft sie dir, die Extrem- und Wendepunkte zu bestimmen und das Monotonie- bzw. Krümmungsverhalten zu untersuchen.

Warum ist das Integral die Fläche?

Integral als Flächenbilanz

Das Integral wird dazu verwendet, Flächen zwischen den Koordinatenachsen und einem Graphen oder zwischen zwei verschiedenen Graphen zu berechnen. ... Die einzelnen Flächen werden dann betragsmäßig addiert; die Maßzahl nicht orientierten Flächeninhalts ist immer positiv.

Ist ein Integral immer positiv?

Liegt die Fläche oberhalb der x-Achse, so ist das bestimmte Integral positiv. Liegt die Fläche unterhalb der x-Achse so ist das bestimmet Integral negativ.

Wie bestimme ich eine stammfunktion?

Um die Stammfunktion von f(x)=x2 (und anderen Potenzfunktionen) zu bestimmen, geht ihr so vor:
  1. Erhöht den Exponenten um 1.
  2. Schreibt den Kehrbruch dieses "neuen" Exponenten als Faktor vor das x, also 1 durch den um 1 erhöhten Exponenten.
  3. Fertig das ist die "Aufleitung".

Wie berechnet man die Obersumme?

Aus der Monotonie der Funktion erhält man, dass an der Stelle x 0 = 1 \sf x_0=1 x0=1 der maximale Funktionswert f ( x 0 ) = 1 \sf f(x_0)=1 f(x0)=1 des Intervalls angenommen wird. Für die Obersumme gilt somit: O ( 1 ) = x 0 ⋅ f ( x 0 ) = 1 ⋅ 1 = 1 \sf O(1)=x_0 \cdot f(x_0)=1 \cdot 1=1 O(1)=x0⋅f(x0)=1⋅1=1.

Ist die integralfunktion die stammfunktion?

Gemäß dem Hauptsatz der Differential- und Integralrechnung (HDI) ist jede Integralfunktion einer stetigen Funktion f eine Stammfunktion von f . Umgekehrt gilt dies nicht, denn jede Integralfunktion von f hat mindestens eine Nullstelle, aber nicht jede Stammfunktion von f hat zwangsläufig eine Nullstelle.

Hat jede Funktion eine Stammfunktion?

einer stetigen Funktion f ist eine Stammfunktion von f. Nach Definition von F gilt I(f) = F(b) − F(a). Da sich zwei beliebige Stammfunktionen nur durch eine Konstante unterscheiden, gilt die Berechnungsformel in (a) für jede beliebige Stammfunktion G von f.

Was versteht man unter stammfunktion?

Eine Stammfunktion oder ein unbestimmtes Integral ist eine mathematische Funktion, die man in der Differentialrechnung, einem Teilgebiet der Analysis, untersucht. Es kann je nach Kontext erforderlich sein, zwischen diesen beiden Begriffen zu unterscheiden (siehe Abschnitt "Unbestimmtes Integral").

Wie integriere ich einen Bruch?

Nach der „normalen“ Regel wäre: Ein Bruch, in welchem sich ein oben nur eine Zahl befindet und unten ein „x“ ohne Hochzahl, hat als Stammfunktion den Logarithmus (ln). Beispiel p. Steht beim „x“ noch eine Zahl, wendet man die Kettenregel für die Integration an (man teilt also durch die innere Ableitung).