Was sind unitär?

Gefragt von: Sonja Schwab  |  Letzte Aktualisierung: 2. Februar 2021
sternezahl: 4.4/5 (56 sternebewertungen)

Eine unitäre Matrix ist in der linearen Algebra eine komplexe quadratische Matrix, deren Zeilen- und Spaltenvektoren orthonormal bezüglich des Standardskalarprodukts sind. Damit ist die Inverse einer unitären Matrix gleichzeitig ihre Adjungierte.

Was heißt Unitär?

1) auf Einigung gerichtet oder sie erstrebend. 2) Mathematik: ein Fachbegriff in verschiedenen mathematischen Zusammenhängen. Begriffsursprung: Lehnwort aus dem Französischen vom gleichbedeutenden Adjektiv unitaire‎

Wann ist eine Matrix Unitär?

Eine Matrix heißt unitär, wenn gilt: AAH=I (1) wobei gilt AH=ĀT (dh. dem komplex kojugierten Transponierten entspricht). Eine lineare Abbildung aus einem unitären Raum in sich selbst ist unitär, wenn ihre Matrix, bezüglich einer orthogonalen Basis, unitär ist.

Wann ist eine Matrix Unitär Diagonalisierbar?

Ist eine Matrix diagonalisierbar, so ist die geometrische Vielfachheit ihrer Eigenwerte gleich der jeweiligen algebraischen Vielfachheit. Das bedeutet, die Dimension der einzelnen Eigenräume stimmt jeweils mit der algebraischen Vielfachheit der entsprechenden Eigenwerte im charakteristischen Polynom der Matrix überein.

Ist jede invertierbare Matrix Diagonalisierbar?

(a) Jede invertierbare Matrix ist diagonalisierbar. ... (d) Die Eigenwerte einer diagonalisierbaren Matrix sind alle nicht Null. Eine Matrix ist invertierbar, wenn sie Determinante = 0 hat. Besitzt jedoch eine Matrix den Eigenwert 0, dann muss ihre Determinante = 0 und somit die Matrix singulär sein.

Matrizen - normal, hermitesch, selbstadjungiert, unitär

40 verwandte Fragen gefunden

Wann ist eine Matrix hermitesch?

Eine hermitesche Matrix ist stets normal und selbstadjungiert, sie besitzt nur reelle Eigenwerte und sie ist stets unitär diagonalisierbar. Eine wichtige Klasse hermitescher Matrizen sind positiv definite Matrizen, bei denen alle Eigenwerte positiv sind. Eine hermitesche Matrix mit reellen Einträgen ist symmetrisch.

Wann ist eine Matrix normal?

gilt. Der Spektralsatz besagt, dass eine Matrix genau dann normal ist, wenn es eine unitäre Matrix gibt, so dass A = U D U ∗ , wobei eine Diagonalmatrix ist. Normale Matrizen haben also die Eigenschaft, dass sie unitär diagonalisierbar sind.

Wann ist die transponierte gleich der inversen?

Eine orthogonale Matrix ist in der linearen Algebra eine quadratische, reelle Matrix, deren Zeilen- und Spaltenvektoren orthonormal bezüglich des Standardskalarprodukts sind. Damit ist die Inverse einer orthogonalen Matrix gleichzeitig ihre Transponierte.

Was ist eine adjungierte Matrix?

Die adjungierte Matrix (nicht zu verwechseln mit der Adjunkten), hermitesch transponierte Matrix oder transponiert-konjugierte Matrix ist in der Mathematik diejenige Matrix, die durch Transponierung und Konjugation einer gegebenen komplexen Matrix entsteht.

Was bedeutet Adjungiert?

ad·jun·gie·ren, Präteritum: ad·jun·gier·te, Partizip II: ad·jun·giert. Bedeutungen: [1] Mathematik, besonders Algebra und Zahlentheorie: ein gegebenes algebraisches Objekt (zum Beispiel einen Körper) durch Hinzufügen eines nicht zu diesem Objekt gehörenden Elements sowie durch die Erzeugnisse dieses Elements erweitern.

Wie transponiert man eine Matrix?

Jede beliebige Matrix lässt sich transponieren. Was ist eine transponierte Matrix? Die transponierte Matrix AT erhält man durch Vertauschen der Zeilen und Spalten der Matrix A .

Was ist ein Determinant?

Die Determinante einer Matrix ( oder ) gibt an, wie sich das Volumen einer aus Eckpunkten zusammengesetzten Geometrie skaliert, wenn diese durch die Matrix abgebildet wird. Ist die Determinante negativ, so ändert sich zusätzlich die Orientierung der Eckpunkte.

Wann ist ein Vektor Orthonormal?

Eine Orthonormalbasis (oft mit ONB abgekürzt) ist eine Basis eines Vektorraumes, wobei deren Basisvektoren orthonormal zueinander sind. Das heißt das Skalarprodukt zweier beliebiger Basisvektoren ergibt Null und jeder Basisvektor besitzt die Norm 1. ist eine Menge aus Vektoren dieses Vektorraums.

Ist die einheitsmatrix orthogonal?

Die Einheitsmatrix ist im Ring der quadratischen Matrizen das neutrale Element bezüglich der Matrizenmultiplikation. ... Sie wird unter anderem bei der Definition des charakteristischen Polynoms einer Matrix, orthogonaler und unitärer Matrizen, sowie in einer Reihe geometrischer Abbildungen verwendet.

Wann ist eine Abbildung orthogonal?

Eine orthogonale Abbildung oder orthogonale Transformation ist in der Mathematik eine Abbildung zwischen zwei reellen Skalarprodukträumen, die das Skalarprodukt erhält. ... Die Eigenwerte einer solchen Abbildung sind nicht notwendigerweise reell, sie besitzen jedoch alle den komplexen Betrag eins.

Hat jede Matrix einen eigenvektor?

Jeder Matrix hat aber ganz spezielle „eigene“ Vektoren, bei denen sie zwar die Länge ändert, die Richtung aber gleich lässt (falls λ > 0) oder genau umkehrt (falls λ < 0). Es kann auch passieren (falls λ = 0), dass ein Eigenvektor von der Matrix zum Nullvektor gemacht wird.

Ist 0 Invertierbar?

Da 0 ein EW ist, besitzt f einen nicht trivialen Kern => Also ist f nicht injektiv und damit nicht invertierbar. Sei f nicht invertierbar. Da allgemein gilt : A invertierbar <=> det(A) ungleich 0 folgt hier für f det(f) = 0 und damit ist 0 ein Eigenwert.

Wie viele eigenvektoren hat eine Matrix?

Ein Eigenwert hat unendlich viele zugehörige Eigenvektoren, während ein Eigenvektor immer nur zu einem Eigenwert gehören kann. Multipliziert man die Matrix A mit dem k -fachen Eigenvektor, bleibt der zu dem Eigenvektor gehörende Eigenwert λ unverändert.

Wann hat eine Matrix reelle Eigenwerte?

Es gilt: Alle Eigenwerte einer symmetrischen oder hermiteschen Matrix sind reell. Eine reelle Matrix A heißt orthogonal, wenn gilt: AAT = E d. h. AT = A−1 , wobei E die Einheitsmatrix darstellt. Eine komplexwertige Matrix A heißt unitär, wenn gilt: AA† = E d. h. A† = A−1 .