Was versteht man unter wertemenge?

Gefragt von: Kuno Schindler  |  Letzte Aktualisierung: 7. Februar 2022
sternezahl: 4.4/5 (7 sternebewertungen)

Die Wertemenge (oder Bildmenge) einer Funktion ist die Menge aller möglichen Funktionswerte, die herauskommen können, wenn man alle Zahlen aus der Definitionsmenge in die Funktion einsetzt.

Was versteht man unter dem Wertebereich einer Funktion?

Wertemenge oder Wertebereich steht für: die Menge der möglichen Werte einer mathematischen Funktion, siehe Zielmenge. die Menge der angenommenen Werte einer mathematischen Funktion, siehe Bild (Mathematik)

Was versteht man unter einer Definitionsmenge?

Die Definitionsmenge sind alle Zahlen, die eingesetzt werden können, die Lösungsmenge ist automatisch die Hälfe der Definitionsmenge. ... Er umfasst also alle Werte, die x annehmen darf, der Definitionsbereich regelt, welche Werte nicht eingesetzt werden dürfen.

Was ist der Zielbereich einer Funktion?

Funktionsbegriff - Definition von Funktion, Definitionsbereich (Definitionsmenge), Wertebereich (Zielbereich) Der Definitionsbereich (auch Definitionsmenge genannt) ist die Menge an Zahlen, der wir eine bestimmte Zahl aus dem Wertebereich (auch: Zielbereich) zuordnen. Diese Zuordnung nennen wir Funktion.

Wie gebe ich die Definitionsmenge an?

Die Definitionsmenge ist die Menge der reellen Zahlen.
  1. D = R ∖ { − 1 } D ist die Menge der reellen Zahlen ohne .
  2. D = { 1 , 5 , 7 , 8 } D ist die Menge der Zahlen , , und .
  3. D = { x | − 5 < x < 3 } D ist die Menge aller für die gilt: ist größer als und kleiner als .
  4. Beispiel 6. D = [ − 2 , 1 ] ...
  5. Beispiel 7. ...
  6. Beispiel 8.

Definitionsbereich, Wertebereich bei Funktionen, Übersicht | Mathe by Daniel Jung

15 verwandte Fragen gefunden

Wie bestimmt man die Definitionsmenge eines Wurzelterms?

Das bedeutet, die Definitionsmenge des Wurzelterms ist begrenzt. So können Sie den Definitionsbereich bestimmen.
...
So bestimmen Sie den Definitionsbereich eines Wurzelterms
  1. Nehmen Sie den Term, der unter der Wurzel steht, und setzen Sie ihn gleich Null.
  2. Lösen Sie nun den Term nach x auf.

Wie lautet die Definitionsmenge der sinusfunktion?

Sinus- und Kosinusfunktion haben ganz R als Definitionsbereich. Man sieht, dass man alle x ∈ R x\in\mathbb R x∈R ausschließen muss, für die c o s ( x ) = 0 \mathrm{cos}(x)=0 cos(x)=0 wird. ...

Was ist eine mathematische Funktion?

Definition einer mathematischen Funktion

Eine Funktion ist eine Beziehung zwischen zwei Mengen. Meist werden die Elemente dieser Mengen x und y genannt. Diese Mengen heißen Definitionsbereich (Definitionsmenge) und Wertebereich (Wertemenge).

Was versteht man unter funktionsgleichung?

Als Funktionsgleichung bezeichnet man dann die genaue Rechenvorschrift, mit der jedem x ein f ( x ) f(x) f(x) zugeordnet wird. Eine Funktionsgleichung ist also eine Formel, die zwei mathematische Größen miteinander in Verbindung setzt.

Was versteht man unter Funktionen?

Begriff: Eine Funktion dient der Beschreibung von Zusammenhängen zwischen mehreren verschiedenen Faktoren. Bei einer Funktion - einer eindeutigen Zuordnung - wird jedem Element der einen Menge genau ein Element der anderen zugewiesen; jedem x wird genau ein y zugeordnet und nicht mehrere.

Wann braucht man die Definitionsmenge?

Der Definitionsbereich - auch Definitionsmenge genannt - gibt an, welche Zahlen man in eine Funktion einsetzen darf bzw. welche man nicht einsetzen darf. Dies ist insbesondere wichtig, wenn es um Brüche, Wurzeln oder Logarithmen geht. In Mathematik-Aufgaben wird meistens nach dem maximalen Definitionsbereich gefragt.

Wie beschreibt man die Wertemenge?

Die Wertemenge (oder Bildmenge) einer Funktion ist die Menge aller möglichen Funktionswerte, die herauskommen können, wenn man alle Zahlen aus der Definitionsmenge in die Funktion einsetzt.

Was ist die Punktprobe und wie führe ich sie durch?

Eine Punktprobe wird durchgeführt, indem man die Koordinaten des Punktes in die Gleichung der Punktmenge einsetzt. Erfüllt der Punkt die Gleichung, d. h. entsteht eine wahre Aussage, so liegt der Punkt in der Punktmenge.

Wie gibt man Definitions und Wertebereich an?

Man erhält den Definitionsbereich einer Funktion für diejenigen x-Werte, die beim Einsetzen in die Funktionsgleichung reelle Funktionswerte ergeben. Hat man den Definitionsbereich einer Funktion ermittelt, so lässt sich meist der Wertebereich W(f) angeben.

Was versteht man unter einer nullstelle?

Die Nullstellen einer Funktion f sind geometrisch gesehen die Schnittpunkte des Graphen der Funktion f mit der x-Achse. Funktionen können keine, eine, mehrere und sogar unendlich viele Nullstellen haben.

Wie berechnet man den Scheitelpunkt?

Der Scheitelpunkt zeigt den höchsten bzw. tiefsten Punkt einer Parabel. Du kannst den Scheitelpunkt an der Scheitelpunktform einer quadratischen Funktion f(x) = a(x-d)²+e ablesen. Du kannst auch mithilfe der quadratischen Ergänzung oder durch Ableitung den Scheitelpunkt berechnen.

Was ist eine funktionsgleichung Beispiel?

Die Funktionsgleichung der linearen Funktion hat die Form g(x)=-3x+1. Die Funktionsgleichung der antiproportionalen Funktion hat die Form h(x)=2x. Die Funktionsgleichung der quadratischen Funktion hat die Form f(x)=2x2-16x+32.

Wie beschreibt man eine funktionsgleichung?

Der Funktionsterm für lineare Funktionen hat immer die Form m⋅x+b. Die Funktionsgleichung ist y=f(x)=m⋅x+b. Terme sind Rechenausdrücke. Ein Term heißt linear, wenn die Variable nur mit einer Zahl malgenommen wird.

Wie erkenne ich eine funktionsgleichung?

Funktionsgleichungen aufstellen durch Ablesen am Graphen

Die Gleichung hat die Form y=mx+b . Dabei bezeichnet m den Wert für die Steigung und b den y -Achsenabschnitt. Hast du von einer linearen Funktion den Graphen, also die Gerade gegeben, kannst du beide Werte direkt der graphischen Darstellung entnehmen.

Was ist eine Funktion einfach erklärt?

Eine Funktion ist eine Beziehung zwischen zwei Mengen und die jedem Element (x-Wert) der Menge ein Element (y-Wert) der Menge zuordnet. ... Die Menge heißt Wertebereich. In dieser Menge liegen alle Funktionswerte. Der Graph einer Funktion ist die Veranschaulichung der Punkte aus den beiden Mengen im Koordinatensystem.

Was ist eine Funktion und was nicht?

Eine Funktion ist eine Zuordnung, die jedem Element des Definitionsbereichs jeweils genau ein Element des Wertebereichs zuordnet. ... Das linke Pfeildiagramm stellt eine Zuordnung dar, die keine Funktion ist. Dem Schüler Leon ist gar keine Farbe zugeordnet. Somit kann diese Zuordnung keine Funktion sein.

Was ist eine quadratische Funktion einfach erklärt?

Quadratische Funktion - Erklärung und Definition

Bei einer quadratischen Funktion wird allgemein die Variable zum Quadrat genommen. Die einfachste Form ist die Normalparabel, die die Funktionsgleichung f(x) = x^2 besitzt.

Wie bestimmt man die Nullstellen einer Sinusfunktion?

Bestimmen der Nullstellen heißt, die Gleichung sin1x=0 zu lösen. Setzt man 1x=z, so erhält man die Gleichung sinz=0, die für alle z=k⋅π, k∈ℤ erfüllt ist.

Ist die Sinusfunktion gerade?

3) Die Sinusfunktion f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx ist eine ungerade Funktion; die Kosinusfunktion f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx ist eine gerade Funktion.

Wie verläuft die Sinusfunktion?

Die Sinusfunktion wird entlang der y-Achse verschoben, wenn ein Wert zum Funktionsterm dazu addiert oder davon abgezogen wird. Dabei verschiebt sich die Sinuskurve entlang der y-Achse in positive oder negative Richtung.