Wie beweist man stetigkeit?

Gefragt von: Viktoria Henning-Betz  |  Letzte Aktualisierung: 26. Mai 2021
sternezahl: 4.8/5 (68 sternebewertungen)

Eine Funktion ist stetig, wenn der Graph der Funktion im Definitionsbereich nahtlos gezeichnet werden kann. Anders ausgedrückt: Der Graph muss in jedem zusammenhängenden Teilintervall aus dem Definitionsbereich nahtlos gezeichnet werden können.

Wie zeigt man dass eine Funktion stetig ist?

Eine Funktion ist stetig, wenn der Graph der Funktion im Definitionsbereich nahtlos gezeichnet werden kann. Anders ausgedrückt: Der Graph muss in jedem zusammenhängenden Teilintervall aus dem Definitionsbereich nahtlos gezeichnet werden können.

Ist eine stetige Funktion immer differenzierbar?

Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.

Wann ist eine Folge stetig?

Definition. Eine Funktion ist also stetig, wenn für jede erdenkliche Folge an x-Werten, die sich x0 nähert, auch deren Funktionswerte gegen den Funktionswert von f(x0) streben.

Wann ist eine Funktion stetig fortsetzbar?

Wenn die Funktion f an der Stelle x0 nicht definiert ist, aber der linksseitige und rechtsseitige Grenzwert existieren und übereinstimmen, wird dieser Wert als Grenzwert limx→x0 f(x) bezeichnet. Dann ist f stetig fortsetzbar in x0.

STETIGKEIT überprüfen und beweisen – abschnittsweise definierte Funktionen, stetig, Beweis

29 verwandte Fragen gefunden

Ist eine polstelle stetig?

Anmerkungen: An der Stelle x1=2 besitzt f (wie leicht nachprüfbar ist) eine Polstelle. Sie ist (im Gegensatz zu f) eine im gesamten Definitionsbereich stetige Funktion.

Wie gibt man Definitionslücken an?

Vorgehensweise
  1. Nullstellen des Nenners berechnen (= Definitionslücken bestimmen)
  2. Nullstellen des Zählers berechnen.
  3. Prüfen, ob ein Pol vorliegt oder möglicherweise eine hebbare Definitionslücke. ...
  4. Zähler und Nenner faktorisieren.
  5. Bruch kürzen.
  6. Prüfen, ob Pol oder hebbare Definitionslücke vorliegt.

Wann ist eine Funktion nicht stetig?

In der Analysis, einem Teilgebiet der Mathematik, wird eine Funktion innerhalb ihres Definitionsbereichs überall dort als unstetig bezeichnet, wo sie nicht stetig ist. Eine Stelle, an der eine Funktion unstetig ist, bezeichnet man daher auch als Unstetigkeitsstelle oder Unstetigkeit.

Was bedeutet gleichmäßig stetig?

Eine gleichmäßig stetige Funktion ist ein Begriff aus dem mathematischen Teilgebiet der Analysis. ... Bei einer gleichmäßig stetigen Funktion ist der Abstand beliebiger Paare von Funktionswerten kleiner als ein beliebig vorgegebener Maximalfehler, solange die Argumente hinreichend nah beieinanderliegen.

Was besagt der Zwischenwertsatz?

Der Zwischenwertsatz besagt Folgendes: Wenn f eine über dem abgeschlossenen Intervall [a; b] stetige Funktion mit f(a)≠f(b) ist, dann nimmt f jeden Wert c, der zwischen den Funktionswerten f(a) und f(b) liegt, mindestens einmal an.

Was bedeutet es wenn eine Funktion differenzierbar ist?

Differenzierbarkeit einer Funktion bedeutet, dass der Graph der Funktion an jeder Stelle eine eindeutig bestimmbare Tangente besitzt.

Welcher Zusammenhang besteht zwischen Differenzierbarkeit und Stetigkeit einer Funktion?

Es zeigt sich, dass aus der Differenzierbarkeit einer Funktion ihre Stetigkeit folgt, umgekehrt muss jedoch eine stetige Funktion nicht differenzierbar sein.

Wie oft ist die Funktion differenzierbar?

Eine glatte Funktion ist eine mathematische Funktion, die unendlich oft differenzierbar (insbesondere stetig) ist.

Was bedeutet das Wort stetig?

Hier bekommst du einige Erläuterungen zum Adjektiv stetig: Stetig bedeutet, dass sich über längere Zeit etwas beständig, gleichmäßig und ohne Unterbrechung entwickelt oder bewegt.

Wann ist eine Funktion nicht definiert?

Gebrochenrationale Funktionen

Die -Werte, für die der Nenner gleich Null wird, müssen wir aus dem Definitionsbereich ausschließen. Dadurch entstehen sog. Definitionslücken – das sind Stellen, an denen die Funktion nicht definiert ist.

Wann ist eine Definitionslücke Hebbar?

Wie schon mehrmals erwähnt ist eine hebbare Definitionslücke gegeben, wenn sowohl der Nenner als auch der Zähler für einen bestimmten Wert für x_0 = 0wird. Der Begriff hebbar bedeutet in diesem Zusammenhang, dass die Definitionslücke behoben und damit der Definitionsbereich erweitert werden kann.

Wann ist es eine Definitionslücke?

In dem mathematischen Teilgebiet der Analysis hat eine Funktion Definitionslücken, wenn einzelne Punkte aus ihrem Definitionsbereich ausgeschlossen sind. Üblicherweise geht es dabei um reelle, stetige bzw. differenzierbare Funktionen. ... Oft werden Definitionslücke und Singularität als Synonyme verwendet.

Sind Definitionslücken asymptoten?

Wenn der Zähler und der Nenner keine gemeinsamen Nullstellen haben, d.h. keine hebbare Definitionslücke existiert, sind die Nullstellen des Nenners die Definitionslücken (genauer Polstellen) von der Funktion. Diese Polstelle wird auch senkrechte Asymptote genannt.