Wie funktioniert die atmungskette?
Gefragt von: Diethelm Stoll B.A. | Letzte Aktualisierung: 15. April 2021sternezahl: 4.6/5 (61 sternebewertungen)
In der Atmungskette werden die Elektronen von den in Glykolyse und Citratcyclus reduzierten Coenzymen über eine Kette von Elektronen-Carriern (-transportern) schrittweise auf Sauerstoff übertragen, um eine Knallgasreaktion zu verhindern.
Was macht die Atmungskette?
Die Funktion der Atmungskette besteht darin, molekularen Sauerstoff mit Elektronen aus NADH und FADH2 zu reduzieren und die dabei frei werdende Energie in einen Protonengradienten umzuwandeln, der zur Synthese von ATP genutzt werden kann.
Wo läuft die Atmungskette ab?
Die Atmungskette läuft an der inneren Membran der Mitochondrien ab und wird von fünf Proteinkomplexen gesteuert.
Was passiert mit NADH in der Atmungskette?
Die Atmungskette ist ein Spezialfall einer Elektronentransportkette und bildet zusammen mit der Chemiosmosis den Prozess der oxidativen Phosphorylierung. Durch NADH, FMNH2 und FADH2 angelieferte Elektronen werden in einer Reihe von Redoxvorgängen auf ein Oxidationsmittel übertragen.
Woher kommen die Elektronen in der Atmungskette?
Formal werden dabei die Elektronen vom Ubihydrochinon auf Cytochrom c übertragen, sowie 2 Protonen in den Intermembranraum zurück transportiert. Die dabei frei werdende Energie befähigt Komplex III zum Transport von 2 Protonen in den Intermembranraum.
Die Atmungskette - Zellatmung Advanced 3
20 verwandte Fragen gefunden
Woher kommt der Sauerstoff in der Atmungskette?
Die während des Citratzyklus entstandenen Coenzyme NADH und FADH2 übertragen ihren Wasserstoff an Sauerstoff und bilden somit Wasser – eine Knallgasreaktion mitten in der Zelle - würde diese Reaktion nicht auf viele harmlose Schritte aufgespalten ablaufen – die Atmungskette. ...
Wo kommt ATP vor?
Der größte Teil des verbrauchten ATP wird bei Tieren, Pflanzen und den meisten Bakterien durch die ATP-Synthase regeneriert. Der Tagesumsatz an ATP beträgt beim Menschen teilweise weit über 80 Kilogramm. in der inneren Mitochondrienmembran von Eukaryoten (Zellen von Pflanzen und Tieren).
Warum liefert NADH mehr ATP als FADH2?
Durch die Oxidation von einem NADH entstehen somit 2,5 ATP. ... Deshalb können mit Hilfe der beiden Elektronen des FADH2 nur 6 Protonen (anstatt 10 Protonen wie bei NADH) aus der Matrix in den Intermembranraum gepumpt werden.
Warum stellen NADH H+ und FADH2 energiereiche Moleküle dar?
Warum stellen NADH+H und FADH2 energiereiche Moleküle dar? Sie besitzen Elektronenpaare, die unter Energiefreisetzung leicht auf Sauerstoff übertragen werden können.
Wie viel ATP entsteht in der Atmungskette?
Das geschieht durch das Enzym ATP-Synthase, das durch Protonen angetrieben wird und synthetisiert weitere 34 ATP-Moleküle. Die Energiebilanz der Zellatmung liegt bei maximaler Ausnutzung der Energie bei 38 ATP pro Glucosemolekül – jeweils 2 ATP aus der Glykolyse und dem aus Citratzyklus und 34 ATP aus der Atmungskette.
Warum kommt es bei der Zellatmung nicht zur Knallgasreaktion?
Formal ist die Zellatmung die Umkehrung der Fotosynthese. Bei der Knallgasreaktion (H2 + 1/2 O2 ¥ H2O) gibt der Wasserstoff Elektronen an den Sauerstoff ab. ... Es kommt jedoch nicht zu einer Knall- gasreaktion, da Wasserstoff im Zellstoffwechsel sicher in Kohlenhydraten, Proteinen und Fetten verpackt ist.
Wo ist der Ort der Zellatmung?
Als Zellatmung, biologische Oxidation oder innere Atmung werden jene Stoffwechselprozesse bezeichnet, die dem Energiegewinn der Zellen dienen. Insbesondere versteht man hierunter die biochemischen Vorgänge der Atmungskette in der inneren Membran der Mitochondrien, an deren Ende ATP synthetisiert wird.
Wo findet die Citratcyclus statt?
Der Citratzyklus (auch als Krebs-Zyklus, Zitronensäurezyklus oder Tricarbonsäurezyklus bezeichnet) ist ein zyklischer Stoffwechselprozess. Er findet im Matrixraum der Mitochondrien statt und spielt eine wichtige Rolle für den Anabolismus (Aufbau) und Katabolismus (Abbau).
Wie wichtig ist NADH?
NADH repariert Schäden der DNA und regeneriert geschädigte Zellen. Es schützt die Zellen auch vor schädigenden Einflüssen wie radioaktiver Strahlung, vor Umwelt-Toxinen, Medikamenten, Chemikalien und anderen Giftstoffen. 2.3. NADH ist ein besonders starkes Antioxidans.
Was sind reduktionsäquivalente Biologie?
Als ein Reduktionsäquivalent bezeichnet man 1 mol Elektronen, die bei Redoxreaktionen entweder direkt oder in Form von Wasserstoff übertragen werden. Am häufigsten werden Reduktionsäquivalente von NADH, FADH2 und NADPH übertragen.
Was macht ATP im Körper?
In den Zellen, den Mitochondrien, wird ATP unter zur Hilfenahme von Enzymen zu ADP (Adenosindiphosphat) gespaltet, wodurch Energie freigesetzt wird. Energie, die benötigt wird damit alles in uns funktioniert – zum Beispiel die Muskelkontraktion.
Wie verhindert Thermogenin die Bildung von ATP?
Thermogenin ist ein Ionenkanal-Protein und wirkt als Entkoppler der oxidativen Phosphorylierung. Es bewirkt die Durchlässigkeit der Membran für Protonen, wodurch der Protonengradient absinkt. Die ATP-Synthese kommt zum Erliegen. Die Atmungskette wird nicht gehemmt.
Woher kommt NADH?
NAD+ wird im Körper sowohl aus Nicotinsäure (Niacin, Vitamin B3) und Nicotinamid als auch aus den Abbauprodukten der Aminosäure Tryptophan produziert. ... Transferase notwendig ist, um NAD+ zu erhalten. Die energiereiche reduzierte Form NADH entsteht im Katabolismus (bei der Glykolyse und im Citratzyklus).
Was bewirkt die elektronentransportkette in der inneren Mitochondrienmembran?
Elektronenüberträger Ubichinon (Coenzym Q) und Cytochrom c, die in die innere Mitochondrienmembran eingelagert bzw. verankert sind, beteiligt. Der durch die Elektronentransportkette hervorgerufene elektrochemische Gradient wird für die ATP-Synthese genutzt (Oxidative Phosphorylierung).