Wie viele stammfunktionen hat eine funktion?

Gefragt von: Isa Fritsch MBA.  |  Letzte Aktualisierung: 27. Juni 2021
sternezahl: 4.3/5 (36 sternebewertungen)

Es gibt immer unendlich viele Stammfunktionen der Form F(x) + c einer gegebenen Funktion f(x), da die Ableitung einer solchen Stammfunktion immer wieder f(x) ergibt.

Hat jede Funktion eine Stammfunktion?

einer stetigen Funktion f ist eine Stammfunktion von f. Nach Definition von F gilt I(f) = F(b) − F(a). Da sich zwei beliebige Stammfunktionen nur durch eine Konstante unterscheiden, gilt die Berechnungsformel in (a) für jede beliebige Stammfunktion G von f.

Warum gibt es keine bestimmte stammfunktion?

Existenz und Eindeutigkeit. nicht stetig ist, nicht differenzierbar zu sein, ist also im Allgemeinen keine Stammfunktion. Notwendig für die Existenz einer Stammfunktion ist, dass die Funktion den Zwischenwertsatz erfüllt. Dies folgt aus dem Zwischenwertsatz für Ableitungen.

Was bedeutet eine stammfunktion?

Unter der Stammfunktion einer Funktion f (x) versteht man die Funktion F (x), deren Ableitung F '(x) mit f (x) übereinstimmt. ... Die Stammfunktion F (x) ist demnach die Aufleitung von f (x).

Wie zeigt man dass eine Funktion die stammfunktion ist?

Stammfunktionen einer Funktion

F2 ist genau dann eine Stammfunktion von f, wenn es eine Zahl C (C∈ℝ) gibt, so dass F2(x)=F1(x)+C für alle x∈D gilt.

Stammfunktion bilden Basics | INTEGRALRECHNUNG | Mathe by Daniel Jung

45 verwandte Fragen gefunden

Für was braucht man die stammfunktion?

Stammfunktionen braucht man, um Flächen zwischen Funkionen zu berechnen. Im Gegensatz zu Ableitungen, wo man jede Funktion ableiten kann, kann man nicht jede Funktion integrieren [= „aufleiten“ = „Stammfunktion bilden“].

Was ist die Aufleitung?

Zunächst ein wichtiger Hinweis: Der Begriff "Aufleiten" ist umgangssprachlich. Er wird von vielen Schülern einfach als das Gegenteil von Ableiten angesehen. In der Mathematik spricht man bei diesem Bereich richtigerweise von Integration bzw. ... Studenten, die sich der Sache von der Umgangssprache her genähert haben.

Was ist eine Stammfunktion von f?

Es gilt aber: Findet man eine Funktion F, deren Ableitung gleich f ist, so ist F eine Stammfunktion von f. ...

Was versteht man unter einem Integral?

Das Integral ist ein Oberbegriff für das bestimmtes und unbestimmtes Integral. Ein bestimmtes Integral liefert einen Zahlenwert, während ein unbestimmtes Integral eine Funktion liefert. Das bestimmte Integral berechnet nämlich die Fläche zwischen dem Graph einer Funktion und der x-Achse. ...

Ist jede stammfunktion stetig?

Wenn die Funktion f eine Stammfunktion F besitzt, dann gilt doch nach Definition diff(F,x) = f ! D.h. Stammfunktionen sind differenzierbar und damit insbesondere stetig.

Warum gibt es zu einer gegebenen Funktion f keine eindeutig bestimmte stammfunktion?

Es gibt immer unendlich viele Stammfunktionen der Form F(x) + c einer gegebenen Funktion f(x), da die Ableitung einer solchen Stammfunktion immer wieder f(x) ergibt.

Welche Ableitungsregel führt dazu dass eine konstante C beim Ableiten einer möglichen stammfunktion wegfällt?

Welche Ableitungsregel führt dazu dass eine konstante C beim Ableiten einer möglichen stammfunktion wegfällt? Hinweis: Die Ableitung einer konstanten Funktion ist Null, denn die Steigung der Funktion ist Null. Ist die konstante Funktion f(x) = c, dann ist die erste Ableitung f'(x) = 0.

Warum hat e x 2 keine stammfunktion?

Nach der Quotientenregel gilt (unter Beachtung von (II)): Also ist F(x)=[e^(x²)]/(2x) keine Stammfunktion von f(x)=e^(x²), weil die Funktion F' nicht identisch mit f ist.

Warum ist das Integral die stammfunktion?

Der Stammfunktion wird daher allgemein ein hinzugefügt, um das Problem der unbestimmten Konstante zu umgehen. Die Integration wird formal folgendermaßen dargestellt: ∫ f ( x ) d x = F ( x ) + c , wobei das angibt, nach welcher Variablen integriert werden soll.

Was ist die Stammfunktion von 4x?

Dividiere 2x2 2 x 2 durch 1 1 . Die Lösung ist die Stammfunktion der Funktion f(x)=4x f ( x ) = 4 x .

Ist f Riemann integrierbar so besitzt f eine Stammfunktion?

Es gibt Funktionen, die integrierbar sind, aber keine Stammfunktion besitzen. f ist monoton und ist daher nach Satz 16MG integrierbar auf [ − 1 , 1 ] [-1,1] [−1,1].

Was ist die Stammfunktion von 1 2x?

Die Lösung ist die Stammfunktion der Funktion f(x)=12x f ( x ) = 1 2 x .

Wie geht Aufleiten?

Zunächst ein wichtiger Hinweis: Die Begriffe "Aufleiten" bzw. "Aufleitung" sind umgangssprachlich. Er wird von vielen Schülern einfach als das Gegenteil von Ableiten angesehen.
...
Es folgen Beispiele:
  1. f(x) = 2 -> F(x) = 2x + C.
  2. f(x) = 5 -> F(x) = 5x + C.
  3. f(x) = 8 -> F(x) = 8x + C.

Wie macht man Aufleitung?

Merke: Eine Konstante wird aufgeleitet, in dem man an die Konstante ein "x" angehängt und +C schreibt. Das C steht dabei für eine beliebige Zahl. Lasst dieses C erst einmal so stehen, wie es ist. Der Grund: Leitet ihr 2x + 2 oder 2x + 5 bzw.