Wo ist die funktion stetig?

Gefragt von: Viola Kaiser-Wegner  |  Letzte Aktualisierung: 11. August 2021
sternezahl: 4.3/5 (9 sternebewertungen)

Eine Funktion ist stetig, wenn der Graph der Funktion im Definitionsbereich nahtlos gezeichnet werden kann. Anders ausgedrückt: Der Graph muss in jedem zusammenhängenden Teilintervall aus dem Definitionsbereich nahtlos gezeichnet werden können.

Wie prüfe ich ob eine Funktion stetig ist?

Es gibt eine einfache Methode, um herauszufinden ob eine Funktion stetig ist: Zeichne den Graph der Funktion. Wenn dir das in einem Zug gelingt (also ohne den Stift abzusetzen), dann ist die Funktion stetig.

Wann ist eine Funktion in einem Punkt stetig?

Eine Funktion f ist in einem Punkt a ihres Definitionsbereiches D genau dann stetig, wenn für jede Folge (xn) in D die Konvergenz xn → a die Konvergenz der Folge der Bilder (f (xn)) gegen f (a) nach sich zieht (Folgenkriterium für Stetigkeit).

Wann ist eine Funktion nicht stetig?

In der Analysis, einem Teilgebiet der Mathematik, wird eine Funktion innerhalb ihres Definitionsbereichs überall dort als unstetig bezeichnet, wo sie nicht stetig ist. Eine Stelle, an der eine Funktion unstetig ist, bezeichnet man daher auch als Unstetigkeitsstelle oder Unstetigkeit.

Für welchen Wert ist die Funktion stetig?

Eine reelle Funktion ist stetig, wenn hinreichend kleine Änderungen des Arguments zu beliebig kleinen Änderungen des Funktionswerts führen. Intuitiv bedeutet das, dass der Graph eine zusammenhängende Linie ist.

Stetigkeit, Übersicht der Möglichkeiten, mit stetig hebbarer Lücke | Mathe by Daniel Jung

17 verwandte Fragen gefunden

Ist eine stetige Funktion immer differenzierbar?

Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.

Wie kann man Stetigkeit anschaulich beschreiben?

Eine Funktion heißt stetig in , wenn sie an jeder Stelle ihres Definitionsbereiches stetig ist. (Dies kann genauso für jedes andere Intervall angegeben werden). Anschaulich bedeutet die Stetigkeit, dass der Graph von keinen Sprung macht. (Der Graph lässt sich zeichnen ohne den Stift abzusetzen).

Wann ist eine Funktion nicht definiert?

Gebrochenrationale Funktionen

Die -Werte, für die der Nenner gleich Null wird, müssen wir aus dem Definitionsbereich ausschließen. Dadurch entstehen sog. Definitionslücken – das sind Stellen, an denen die Funktion nicht definiert ist.

Wann ist eine Funktion stetig fortsetzbar?

Wenn die Funktion f an der Stelle x0 nicht definiert ist, aber der linksseitige und rechtsseitige Grenzwert existieren und übereinstimmen, wird dieser Wert als Grenzwert limx→x0 f(x) bezeichnet. Dann ist f stetig fortsetzbar in x0.

Was bedeutet das Wort stetig?

IPA: [ˈʃteːtɪç] Wortbedeutung/Definition: 1) kontinuierlich, zusammenhängend, ohne Unterbrechung.

Wie findet man heraus ob eine Funktion differenzierbar ist?

Eine Funktion ist differenzierbar, wenn sie an jeder Stelle x0 differenzierbar ist - heißt umgekehrt: Sobald es eine Stelle gibt, an der f(x) nicht differenzierbar ist, ist die gesamte Funktion nicht differenzierbar.

Wann ist LN nicht definiert?

Der Logarithmus ist nicht definiert, wenn der Numerus den Wert 0 hat, da keine Potenz zum Wert 0 führt (ohne Berücksichtigung des Sonderfalls Null hoch Null):

Wie definiert man eine Funktion?

Definition einer mathematischen Funktion

Eine Funktion ist eine Beziehung zwischen zwei Mengen. ... Diese Mengen heißen Definitionsbereich (Definitionsmenge) und Wertebereich (Wertemenge). Der Definitionsbereich wird durch die x-Werte (Argumente) gebildet, der Wertebereich durch die zugeordneten y-Werte.

Woher weiß ich ob eine Funktion umkehrbar ist?

Eine Funktion heißt umkehrbar eindeutige (eineindeutige) Funktion, wenn nicht nur jedem Argument eindeutig ein Funktionswert zugeordnet ist, sondern auch umgekehrt zu jedem Funktionswert genau ein Argument gehört.

Wie berechnet man Stetigkeit?

Eine Funktion ist stetig, wenn der Graph der Funktion im Definitionsbereich nahtlos gezeichnet werden kann.
...
Rechenregeln
  1. f + g , f − g. sind stetig (Summe, Differenz)
  2. f ⋅ g. ist stetig (Produkt)
  3. f g. ist stetig (Quotient; nur wenn g ≠ 0 )
  4. f ( g ( x ) ) , g ( f ( x ) ) sind stetig (Verknüpfungen/Verkettungen)

Warum ist Stetigkeit wichtig?

Die Stetigkeit ist ein wichtiges Konzept der Topologie. Sie erhält nämlich Nachbarschaftsbeziehungen. Dies bedeutet, dass durch stetige Funktionen benachbarte Punkte „nicht auseinandergerissen“ werden.

Was ist Lipschitz stetig?

Die Lipschitzstetigkeit, auch Dehnungsbeschränktheit, ist ein Begriff aus dem mathematischen Teilgebiet der Analysis. ... Anschaulich gesprochen kann sich eine lipschitzstetige Funktion nur beschränkt schnell ändern: Alle Sekanten einer Funktion haben eine Steigung, deren Betrag nicht größer ist als die Lipschitzkonstante.

Welcher Zusammenhang besteht zwischen Differenzierbarkeit und Stetigkeit einer Funktion?

Es zeigt sich, dass aus der Differenzierbarkeit einer Funktion ihre Stetigkeit folgt, umgekehrt muss jedoch eine stetige Funktion nicht differenzierbar sein.