Wo ist funktion differenzierbar?

Gefragt von: Carina Keßler  |  Letzte Aktualisierung: 24. Mai 2021
sternezahl: 4.6/5 (25 sternebewertungen)

Differenzierbarkeit einer Funktion
Eine Funktion ist differenzierbar, wenn sie an jeder Stelle x0 differenzierbar ist - heißt umgekehrt: Sobald es eine Stelle gibt, an der f(x) nicht differenzierbar ist, ist die gesamte Funktion nicht differenzierbar.

Wann ist eine Funktion überall differenzierbar?

Differenzierbarkeit einer Funktion in x0 bedeutet, dass der Graph dieser Funktion in x0 eine nicht zur y-Achse parallele Tangente besitzt. Definition: Es sei I ein offenes Intervall und f: Ι→ℝ. Die Funktion f heißt in I differenzierbar, wenn sie in jedem Punkt von I differenzierbar ist.

Welche Funktionen sind nicht differenzierbar?

Lexikon der Mathematik Nicht-Differenzierbarkeit. liegt bei einer Funktion f:D→R an einer inneren Stelle a∈D⊂R vor, wenn der Differenzenquotient Qf (a, x) für D∍x→a in R nicht konvergiert. ... Ist dabei f außer an der Stelle a differenzierbar, so hat f an der Stelle a einen ‚Knick'.

Wie zeigt man dass eine Funktion stetig differenzierbar ist?

Eine Funktion ist stetig differenzierbar, wenn sie differenzierbar ist und ihre ->Ableitungsfunktion stetig ist. Beispiel: Die Funktion f mit f(x) = 2x³+5x²+10 besitzt die stetige Ableitung f' mit f'(x) = 6x²+10x. Alle ->ganzrationalen Funktionen sind stetig differenzierbar.

Wann ist eine Funktion stetig aber nicht differenzierbar?

In der Mathematik bezeichnet man als Weierstraß-Funktion ein pathologisches Beispiel einer reellwertigen Funktion einer reellen Variablen. Diese Funktion hat die Eigenschaft, dass sie überall stetig, aber nirgends differenzierbar ist. Sie ist nach ihrem Entdecker Karl Weierstraß benannt.

Differenzierbarkeit an einer Stelle, Grenzwert existiert,Differentialquotient | Mathe by Daniel Jung

43 verwandte Fragen gefunden

Wann ist eine Funktion nicht definiert?

Gebrochenrationale Funktionen

Die -Werte, für die der Nenner gleich Null wird, müssen wir aus dem Definitionsbereich ausschließen. Dadurch entstehen sog. Definitionslücken – das sind Stellen, an denen die Funktion nicht definiert ist.

Welcher Zusammenhang besteht zwischen Differenzierbarkeit und Stetigkeit einer Funktion?

Es zeigt sich, dass aus der Differenzierbarkeit einer Funktion ihre Stetigkeit folgt, umgekehrt muss jedoch eine stetige Funktion nicht differenzierbar sein.

Wie oft ist die Funktion differenzierbar?

Eine glatte Funktion ist eine mathematische Funktion, die unendlich oft differenzierbar (insbesondere stetig) ist.

Welche Funktionen sind integrierbar?

Jede Funktion, die stetig ist, ist auch integrierbar. Eine Funktion die integrierbar ist, ist nicht automatisch in allen Stellen stetig ist (z.B. die Signum-Funktion – integrierbar aber in allen Stellen stetig).

Wann hat eine Funktion keine Ableitung?

Mit anderen Worten: Eine Funktion f(x) ist an der Stelle x0 differenzierbar, wenn die Ableitung an dieser Stelle eindeutig ist, also genau eine Tangente existiert. Anders ausgedrückt, an Stellen, an denen der Graph einer Funktion Spitzen oder Knicke besitzt, ist die Funktion nicht differenzierbar.

Sind Unstetige Funktion differenzierbar?

Differenzierbar bedeutet, dass an der Stelle x0 einer Funktion, die Steigung ermittelt werden kann. Im Punkt P0 (x0 | f(x0). muss also eine eindeutige Tangente existieren. ... Ist eine Funktion an irgendeiner Stelle unstetig, kann sie dort auch nicht differenziert werden.

Ist eine lineare Funktion differenzierbar?

Differenzierbare Funktionen sind genau diejenigen Funktionen, die lokal durch genau eine lineare Funktion approximierbar sind. Differenzierbare Funktionen sind damit genau diejenigen Funktionen, die sich lokal durch lineare Funktionen approximieren lassen (siehe Abbildung).

Was heißt differenzierbar sein?

Als Differenzierbarkeit bezeichnet man in der Mathematik die Eigenschaft einer Funktion, sich lokal um einen Punkt in eindeutiger Weise linear approximieren zu lassen.

Wann ist eine Abbildung differenzierbar?

Die Abbildung f W X ! W heißt differenzierbar, wenn sie in jedem Punkt x0 2 X differenzierbar ist.

Was versteht man unter dem Grenzwert?

In der Mathematik bezeichnet der Limes oder Grenzwert einer Funktion an einer bestimmten Stelle denjenigen Wert, dem sich die Funktion in der Umgebung der betrachteten Stelle annähert.

Wie oft sind polynome differenzierbar?

Polynome zweiten Grades sind zweimal differenzierbar. Polynome ersten Grades (Geraden) nur einmal, Polynome dritten Grades drei mal usw. Ein kleiner Trost: Egal welcher Grad - in der Schule werden nur maximal 3 Ableitungen benötigt- meistens sogar de facto nur zwei.

Was ist eine dreimal differenzierbare Funktion?

Lexikon der Mathematik dreimal stetig differenzierbare Kurve

eine stetig differenzierbare Kurve α(t) derart, daß neben α′(t) auch die Ableitungen α″(t) und α‴(t) existieren und stetig sind.

Sind Lipschitz stetige Funktionen differenzierbar?

Eine Beziehung zwischen Differenzierbarkeit und Lipschitz-Stetigkeit stellt der Schrankensatz dar, welcher aus dem Mittelwertsatz folgt. ... Zuletzt folgt umgekehrt, dass jede lipschitz-stetige Funktion fast überall (d.h. bis auf eine Nullmenge) differenzierbar ist.

Wann hat eine Funktion einen Knick?

Man kann die Differenzierbarkeit einer stetigen Funktion auch daran erkennen, dass ihr Funktionsgraph keinen „Knick“ aufweist: Ein Knick ist eine Stelle, an welcher die Steigung, also die erste Ableitung des Funktionsgraphen links und rechts unterschiedliche Werte aufweist.