Achsensymmetrisch bestimmen?

Gefragt von: Katrin Weigel B.Sc.  |  Letzte Aktualisierung: 21. März 2021
sternezahl: 4.9/5 (22 sternebewertungen)

Man wendet die Formel folgendermaßen an: Man setzt in die Funktion, die man überprüfen will, statt dem „x“ ein „(-x)“ ein (man berechnet also f(-x)). Danach vereinfacht man die Funktion. Wenn nun wieder die Funktion f(x) rauskommt, hat man eine Achsensymmetrie zur y-Achse und ist natürlich fertig.

Wann ist es Achsensymmetrisch?

Achsensymmetrie ist die spiegelbildliche Anordnung von Zeichen zu beiden Seiten einer gedachten Linie. ... Eine Figur heißt achsensymmetrisch, wenn sie durch die senkrechte Achsenspiegelung an ihrer Symmetrieachse auf sich selbst abgebildet wird.

Wann ist eine Parabel Achsensymmetrisch?

Eine Parabel ist achsensymmetrisch . Die Symmetrieachse verläuft parallel zur y-Achse durch den Scheitelpunkt. Zu zwei verschiedenen Punkten mit gleichen y-Koordinaten auf einer unverzerrten Parabel kannst du leicht die x-Koordinaten bestimmen, wenn du den Scheitelpunkt der Parabel kennst.

Wie erkenne ich eine punktsymmetrie?

Eine Figur heißt punktsymmetrisch, wenn sie durch die Spiegelung an einem Punkt, dem sogenannten Symmetriepunkt oder Symmetriezentrum, auf sich selbst abgebildet wird. Es handelt sich um eine Drehung der Figur um 180°.

Was ist symmetrisch zur Y-Achse?

Anzeigen: Mit der Symmetrie zur Y-Achse befassen wir uns diesem Artikel. ... Dies bedeutet, dass jeder auf der Kurve gelegene Punkt durch Spiegelung an der Y-Achse wieder in einen Kurvenpunkt übergeht. Mathematisch findet man solch eine Funktion wenn gilt: f(-x) = f(x).

Symmetrie, Funktionen, rechnerischer Ablauf, Punktsymmetrie, Achsensymmetrie | Mathe by Daniel Jung

45 verwandte Fragen gefunden

Warum ist die Normalparabel symmetrisch zur Y-Achse?

1. Der Graph ist symmetrisch zur y-Achse. Wenn zwei Punkte den gleichen Abstand zur y-Achse haben, dann befinden sie sich auf der gleichen Höhe. Die Normalparabel ist symmetrisch zur y-Achse.

Ist die Funktion symmetrisch?

Eine Funktion ist achsensymmetrisch, wenn es eine Gerade [also eine Achse] gibt, an der man die Funktion derart spiegeln kann, dass als Spiegelbild wieder die gleiche Funktion rauskommt. Normalerweise interessiert man sich bei Symmetrie nur für Punktsymmetrie zum Ursprung und für Achsensymmetrie zur y-Achse.

Was ist der Unterschied zwischen punktsymmetrie und drehsymmetrie?

Die Punktsymmetrie ist eine besondere Form der Drehsymmetrie. Eine Figur heißt punktsymmetrisch, wenn sie bei einer Drehung um 180° um ein Symmetriezentrum Z wieder in sich selbst übergeht.

Wann ist eine Funktion Achsensymmetrisch oder Punktsymmetrisch?

Der Graph von f ist achsensymmetrisch zur y-Achse, da alle Potenzen von x gerade sind; der Graph von g ist punktsymmetrisch zum Koordinatenursprung, da alle Potenzen von x ungerade sind. Demzufolge ist f eine gerade und g eine ungerade Funktion. Die Funktion h ist weder gerade noch ungerade.

Welche der folgenden Buchstaben sind Punktsymmetrisch?

Die Buchstaben N, X, S sind punktsymmetrisch, die Buchstaben A, C, R sind es nicht.

Wann spricht man von einer Normalparabel?

Parabeln haben ein typisches bogenförmiges Aussehen und können nach oben oder nach unten geöffnet sein. Ihr eindeutig bestimmter tiefster bzw. höchster Punkt heißt Scheitelpunkt. Eine Parabel heißt Normalparabel, wenn ihre Funktionsgleichung f ( x ) = x 2 \sf ~f(x)=x^2 f(x)=x2 lautet.

Was sind die symmetrieeigenschaften?

Mit dem geometrischen Begriff Symmetrie (altgriechisch συμμετρία symmetria Ebenmaß, Gleichmaß, aus σύν syn „zusammen“ und μέτρον metron, Maß) bezeichnet man die Eigenschaft, dass ein geometrisches Objekt durch Bewegungen auf sich selbst abgebildet werden kann, also unverändert erscheint.

Welche Symmetrieachse besitzt der Graph?

Der Graph einer quadratischen Funktion ist eine Parabel (quadratische Parabel). Die Symmetrieachse der Parabel verläuft parallel zur y-Achse und schneidet den Graphen der Funktion im Scheitelpunkt (Scheitel) der Parabel. ... Ihre Symmetrieachse ist die y-Achse; der Scheitel hat die Koordinaten (0; 0).

Wann ist eine Funktion Punktsymmetrisch?

Die Funktion f(x) = x2 + x soll auf eine Punktsymmetrie zum Ursprung untersucht werden. Dazu ermitteln wir zunächst f(-x) und -f(x). ... Ist die Gleichung korrekt, dann liegt eine Punktsymmetrie vor.

Welche Vierecke sind Achsensymmetrisch?

Achsensymmetrische Figuren
  • Quadrat. Jedes Quadrat hat vier Symmetrieachsen.
  • Rechteck. Ein Rechteck, das kein Quadrat ist, hat zwei Symmetrieachsen.
  • Raute. Eine Raute, die kein Quadrat ist, hat zwei Symmetrieachsen.
  • Drachenviereck. ...
  • Symmetrisches Trapez. ...
  • Gleichseitiges Dreieck. ...
  • Gleichschenkliges Dreieck. ...
  • Kreis.

Wann ist eine Funktion nicht symmetrisch?

Achsensymmetrie schließt eine Punktsymmetrie aus bzw. Punktsymmetrie schließt eine Achsensymmetrie aus. Liegt keine Achsen- oder Punktsymmetrie vor, so spricht man von einer nicht symmetrischen Funktion. Achsensymmetrie liegt immer dann vor, wenn im Funtkionsterm nur gerade Exponenten vorkommen.

Was ist eine Punktsymmetrische Figur?

Punktsymmetrische Figuren werden an einem bestimmten Punkt gespiegelt, dem Symmetriezentrum, auch Spiegelpunkt genannt. Dieser Punkt kann auch ein Eckpunkt des Vielecks sein.

Was versteht man unter punktsymmetrie?

Eine Figur ist punktsymmetrisch, wenn sie durch die Spiegelung an einem Symmetriepunkt auf sich selbst abgebildet wird.

Was ist die drehsymmetrie?

Eine Figur oder ein Körper ist drehsymmetrisch, wenn sie bzw. er bei einer Drehung unverändert bleibt (auf sich selbst abgebildet wird).