Was bedeutet stetige funktion?

Gefragt von: Maren Bode  |  Letzte Aktualisierung: 28. Juni 2021
sternezahl: 4.2/5 (46 sternebewertungen)

Eine Funktion ist stetig, wenn der Graph der Funktion im Definitionsbereich nahtlos gezeichnet werden kann.

Woher weiß man ob eine Funktion stetig ist?

Eine reelle Funktion ist stetig, wenn hinreichend kleine Änderungen des Arguments zu beliebig kleinen Änderungen des Funktionswerts führen. Intuitiv bedeutet das, dass der Graph eine zusammenhängende Linie ist.

Was sagt Stetigkeit aus?

Stetigkeit ist eine lokale EigenschaftBearbeiten

Das heißt, dass die Kenntnis über den Funktionsverlauf in einer beliebig kleinen Umgebung eines Arguments ausreicht, um entscheiden zu können, ob sie dort stetig ist oder nicht.

Wie definiert man eine Funktion?

Dabei gilt: Wird jedem x-Wert genau ein y-Wert zugeordnet, dann nennt man diese Beziehung eine Funktion. ... Ist jedem y-Wert dann auch genau ein x-Wert zugeordnet, dann nennt man die Funktion eineindeutig. Für den mit x berechneten Funktionswert y schreibt man auch f(x).

Wann ist eine Funktion stetig in einem Intervall?

f heißt stetig auf einem Intervall, wenn f in jedem Punkt des Inter- valls stetig ist.

Stetigkeit, Übersicht der Möglichkeiten, mit stetig hebbarer Lücke | Mathe by Daniel Jung

29 verwandte Fragen gefunden

Wann diskret und stetig?

Ein Merkmal gilt dann als diskret, wenn es nur abzählbar viele Ausprägungen annehmen kann. ... Das Gegenstück zu den diskreten Merkmalen sind die stetigen Merkmale. Diese sind dadurch definiert, dass sie unendlich viele Ausprägungen annehmen können.

Wann ist eine Funktion stetig und differenzierbar?

Eine Funktion ist stetig differenzierbar, wenn sie differenzierbar ist und ihre ->Ableitungsfunktion stetig ist. Beispiel: Die Funktion f mit f(x) = 2x³+5x²+10 besitzt die stetige Ableitung f' mit f'(x) = 6x²+10x. Alle ->ganzrationalen Funktionen sind stetig differenzierbar.

Was versteht man unter Definitionsmenge?

Die Definitionsmenge oder auch der Definitionsbereich beschreibt den Bereich, in dem eine Funktion definiert ist. Dies ist notwendig, denn in der Schulmathematik gibt es zwei Regeln, die nicht gebrochen werden dürfen: \cdot \; Teile\; niemals \;durch \;Null.

Wann ist eine Funktion nicht definiert?

Die innere Funktion ist größer als Null, solange x größer als 1 bzw. ... Oder anders formuliert: Im Intervall zwischen -1 und 1 ist die Funktion nicht definiert. Die Definitionsmenge lautet dementsprechend: Df=R∖[−1,+1] D f = R ∖ [ − 1 , + 1 ] .

Wie erkennt man ob es eine Funktion ist?

Besondere Punkte auf dem Funktionsgraphen

Das Maximum ist der größte Wert, den eine Funktion annimmt. ... Der Graph der Funktion f schneidet die x-Achse im Punkt (-2|0). Der y-Achsenabschnitt ist die y-Koordinate des Schnittpunktes des Graphen mit der y-Achse. Der Graph der Funktion f schneidet die y-Achse im Punkt (0|4).

Was heißt stetig in Mathe?

Eine Funktion ist stetig, wenn der Graph der Funktion im Definitionsbereich nahtlos gezeichnet werden kann. Allgemein ist Stetigkeit über das -Kriterium definiert, mit dem wir uns am Ende dieser Seite noch beschäftigen werden. ...

Ist eine stetige Funktion immer differenzierbar?

Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.

In welchen Punkten ist die Funktion stetig?

Die Funktion f heißt stetig auf dem Bereich D, wenn sie an allen Punkten x∗ ∈ D stetig ist.

Wann ist eine Folge stetig?

Definition. Eine Funktion ist also stetig, wenn für jede erdenkliche Folge an x-Werten, die sich x0 nähert, auch deren Funktionswerte gegen den Funktionswert von f(x0) streben.

Wie kommt man auf die Definitionsmenge?

Vorgehensweise zum Bestimmen der Definitionsmenge
  1. Für jeden der vorkommenden Brüche.
  2. schreibt man den Nenner heraus.
  3. setzt ihn gleich 0.
  4. und löst nach der Variablen auf.
  5. Alle Zahlen, die man dabei als Lösungen erhält, muss man bei der Definitionsmenge ausschließen:
  6. Man schreibt die Grundmenge hin (meist Q oder R),
  7. dann ∖

Wie macht man eine Definitionsmenge?

Schreibweisen der Definitionsmenge

Die formale Bezeichnung für eine Definitionsmenge ist D oder D . Die Definitionsmenge einer Funktion f heißt Df .

Wann ist eine Funktion differenzierbar?

Differenzierbarkeit einer Funktion

Eine Funktion ist differenzierbar, wenn sie an jeder Stelle x0 differenzierbar ist - heißt umgekehrt: Sobald es eine Stelle gibt, an der f(x) nicht differenzierbar ist, ist die gesamte Funktion nicht differenzierbar.

Was bedeutet es wenn eine Funktion differenzierbar ist?

Differenzierbarkeit einer Funktion bedeutet, dass der Graph der Funktion an jeder Stelle eine eindeutig bestimmbare Tangente besitzt.

Wann ist eine Funktion stetig aber nicht differenzierbar?

In der Mathematik bezeichnet man als Weierstraß-Funktion ein pathologisches Beispiel einer reellwertigen Funktion einer reellen Variablen. Diese Funktion hat die Eigenschaft, dass sie überall stetig, aber nirgends differenzierbar ist. Sie ist nach ihrem Entdecker Karl Weierstraß benannt.