Was heißt supremum?

Gefragt von: Jakob Schlegel-Zimmer  |  Letzte Aktualisierung: 30. Dezember 2021
sternezahl: 4.1/5 (21 sternebewertungen)

In der Mathematik treten die Begriffe Supremum und Infimum sowie kleinste obere Schranke bzw. ... Anschaulich ist das Supremum eine obere Schranke, die kleiner als alle anderen oberen Schranken ist. Entsprechend ist das Infimum eine untere Schranke, die größer als alle anderen unteren Schranken ist.

Was ist der Unterschied zwischen Supremum und Maximum?

Jedes Maximum ist ein Supremum, aber nicht jedes Supremum ist ein Maximum. Während nämlich das Maximum ein Element der betrachteten Menge sein muss, muss das nicht für das Supremum gelten. ... Es ist „nach oben beschränkend“, weil es wie das Maximum größer oder gleich jeder Zahl der Menge ist.

Wann gibt es kein Supremum?

Die Existenz von Supremum oder Infimum kann über die Axiome eines angeordneten Körpers nicht bewiesen werden, und das noch ausstehende Vollständigkeitsaxiom der reellen Zahlen fordert diese Existenz einfach.

Wann existiert ein Infimum?

Das Infimum bezeichnet man mit inf M. Somit gilt, dass jede nichtleere, nach oben beschränkte Menge M ⊂ R ein Supremum besitzt und dementsprechend jede nichtleere, nach unten beschränkte Menge M ⊂ R ein Infimum besitzt.

Was ist ein endliches Supremum?

Daher interessiert man sich nur für die größte untere Schranke - das Infimum bzw. die kleinste obere Schranke: das Supremum. Sind sowohl Infimum als auch Supremum endlich (also nicht ±∞), so heißt die Menge beschränkt (Vergleich mit Folgen/Funktionen).

Beschränktheit, Infimum, Supremum, kleinste untere/obere Schranke | Mathe by Daniel Jung

45 verwandte Fragen gefunden

Wie bestimmt man Infimum und Supremum?

Bei endlichen Mengen reeller Zahlen ist die Bestimmung des Infimums und Supremums einfach. Diese Mengen müssen nämlich immer ein Maximum und ein Minimum besitzen. Das Maximum der Menge ist automatisch Supremum und das Minimum ist automatisch Infimum der Menge.

Was bedeutet Infimum?

Das Infimum (deutsch „untere Grenze“) einer Menge ist analog definiert, als „unmittelbar Darunterliegendes“ bzw. größte untere Schranke.

Wann ist ein Infimum ein Minimum?

Das Infimum ist die größte untere Schranke der Menge. D.h alle Werte der betreffenden Menge sind größer oder gleich des Infimum. Ist der Wert des gefundenen Infimum zusätzlich ein Element der Menge, so ist es gleichzeitig das Minimum.

Wann hat eine Menge ein Maximum?

Das größte Element wird auch als Maximum bezeichnet, dementsprechend spricht man beim kleinsten Element vom Minimum. Ein Element einer geordneten Menge ist das größte Element der Menge, wenn alle anderen Elemente kleiner sind. Es ist das kleinste Element der Menge, wenn alle anderen Elemente größer sind.

Wie überprüft man ob Mengen beschränkt sind?

Formaler sagt man:
  1. Eine Funktion f:Df→Wf, x↦f(x) heißt nach unten beschränkt, wenn es eine Zahl s∈R gibt, sodass f(x)≥s für alle x∈D ist. s nennt man dann eine untere Schranke von f.
  2. Eine Funktion f:Df→Wf, x↦f(x) heißt nach oben beschränkt, wenn es eine Zahl s∈R gibt, sodass f(x)≤s für alle x∈D ist.

Kann das Supremum unendlich sein?

Uneigentliche Suprema und Infima für unbeschränkte Mengen

Also ist es sinnvoll, „unendlich“ als Supremum einer nach oben unbeschränkten Menge anzusehen.

Ist unendlich eine obere Schranke?

Genauer: Es gibt unendlich viele Zahlen, die größer als und kleiner als sind. Da jede solche Zahl größer als ist, ist sie Element des Intervalls und somit obere Schranke der Folge. Da sie kleiner als ist, ist sie aber keine obere Schranke. Ein schöner Widerspruch!

Was ist das Vollständigkeitsaxiom?

Die Eigenschaft besagt, dass jede nichtleere und nach oben beschränkte Menge reeller Zahlen eine kleinste obere Schranke, ein Supremum, besitzt. Die Supremumseigenschaft ist eine Form des Vollständigkeitsaxioms für die reellen Zahlen und wird manchmal als Dedekind-Vollständigkeit bezeichnet.

Wie berechnet man das Maximum einer Funktion?

Allgemeine Vorgehensweise:
  1. Wir bilden die erste und zweite Ableitung der Funktion.
  2. Wir setzen die erste Ableitung null um Kandidaten für Extremstellen zu finden.
  3. Mit diesen Kandidaten gehen wir in die zweite Ableitung.
  4. Damit finden wir die Minimumstelle oder Maximumstelle.
  5. Wir können damit Tiefpunkt bzw.

Was bedeutet min Max?

Mit Min-Maxing ist die Optimierung einer Spielfigur und eine besonders effiziente Spielweise gemeint. Oft wird der Begriff abwertend verwendet, weil in ihm etwas Obsessives und Streberhaftes mitschwingt.

Was ist der kleinste Zahl der Welt?

. Diese Zahl entspricht einer 1 mit 100 Nullen, ausgeschrieben: 10.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.

Was bedeutet Beschränktheit einer Funktion?

Als eine beschränkte Abbildung oder eine beschränkte Funktion bezeichnet man in der Analysis und der Funktionalanalysis eine Abbildung, deren Bildmenge beschränkt ist.

Wann ist eine Menge unbeschränkt?

Eine Menge, die nicht beschränkt ist, heißt unbeschränkt. beschränkt, sonst unbeschränkt.

Wann ist eine Menge nach oben beschränkt?

eine Teilmenge N der mit der Ordnungsrelation „≤“ versehenen Menge M mit der Eigenschaft, daß N eine obere Schranke s hat. Dies ist genau dann der Fall, wenn es ein Element s ∈ M so gibt, daß n ≤ s für alle n ∈ N gilt.

Wann ist eine Zahl rational?

Rationale Zahlen erhält man, wenn man das Konzept von ganzen Zahlen mit dem Konzept von Brüchen und Dezimalzahlen kombiniert. Das heißt, die Menge der Brüche wird durch Zahlen der Form −ab erweitert, wobei a und b natürliche Zahlen sind.

Warum ist R vollständig?

a) R ist vollständig, d.h. jede CAUCHY-Folge in R konvergiert. b) R ist die Vervollständigung von Q, d.h. zu jedem x ∈ R gibt es eine Folge (xn)n in Q, die als reelle Folge gegen x konvergiert. ... a) Sei (an)n CAUCHY-Folge in R. Zu zeigen ist nun, dass diese Folge einen Grenzwert in R besitzt.

Warum ist q nicht vollständig?

Kurioserweise sind auch schon die rationalen Zahlen in sich dicht. ... Die rationalen Zahlen sind jedoch nicht vollständig, denn die Menge { q ∈ Q ∣ q 2 < 2 } \{q\in \dom Q| \, q^2<2\} {q∈Q∣q2<2} besitzt kein Supremum, da 2 keine rationale Zahl ist.

Ist die leere Menge beschränkt?

Die leere Menge ist ein grundlegender Begriff aus der Mengenlehre. Eine solche Menge kann sogar unendlich viele Elemente enthalten. ...

Wann ist eine Menge offen?

Anschaulich ist eine Menge offen, wenn ihre Elemente nur von Elementen dieser Menge umgeben sind, mit anderen Worten, wenn kein Element der Menge auf ihrem Rand liegt. Die Komplementärmenge einer offenen Menge nennt man abgeschlossene Menge.

Wann ist eine Menge kompakt?

) ist genau dann kompakt, wenn sie beschränkt und abgeschlossen ist. Sie darf also keine Folge enthalten, die zwar konvergiert, deren Grenzwert jedoch nicht zu der Menge gehört. Auch Folgen, deren Wert „über alle Grenzen wächst“ (also keinen Grenzwert besitzen), dürfen nicht enthalten sein.