Was ist eine diagonalmatrix?

Gefragt von: Imke Riedel  |  Letzte Aktualisierung: 12. April 2021
sternezahl: 5/5 (5 sternebewertungen)

Als Diagonalmatrix bezeichnet man in der linearen Algebra eine quadratische Matrix, bei der alle Elemente außerhalb der Hauptdiagonale Null sind. Diagonalmatrizen sind deshalb allein durch die Angabe ihrer Hauptdiagonalen bestimmt.

Wann ist eine Matrix Diagonalisierbar?

Ist eine Matrix diagonalisierbar, so ist die geometrische Vielfachheit ihrer Eigenwerte gleich der jeweiligen algebraischen Vielfachheit. Das bedeutet, die Dimension der einzelnen Eigenräume stimmt jeweils mit der algebraischen Vielfachheit der entsprechenden Eigenwerte im charakteristischen Polynom der Matrix überein.

Ist die einheitsmatrix Diagonalisierbar?

A hat genau einen Eigenwert und ist Diagonalisierbar->A ist k-faches der Einheitsmatrix. ... Danach zu zeigen, dass alle Einträge von A gleich sind, ist einfach (annehmen, dass ein anderer Eintrag existiert und dann zeigen, dass man dadurch einen weiteren Eigenwert erhält).

Wann ist ein endomorphismus Diagonalisierbar?

Definition Der Endomorphismus ϕ ist diagonalisierbar, falls eine Basis B von V existiert, so dass die Abbildungsmatrix von ϕ bzgl. der Basis B eine Diagonalmatrix ist. Somit ist ϕ genau dann diagonalisierbar, wenn es eine Basis b1,..., bn von V sowie Skalare a1,...,an ∈ K mit ϕ(bi) = ai · bi für alle i = 1,...,n gibt.

Was ist der Rang einer Matrix?

Möglichkeiten der Rangbestimmung einer Matrix M sind das Berechnen der linear unabhängigen Zeilen oder Spalten durch Anwenden elementarer Matrizenoperationen bzw. das Ermitteln der höchsten Ordnung der nicht verschwindenden Unterdeterminanten von M.

Matrix diagonalisieren, Übersicht, Diagonalmatrix, Matrixalgebra, L. Algebra | Mathe by Daniel Jung

17 verwandte Fragen gefunden

Was bedeutet voller Rang einer Matrix?

Ist der Rang einer quadratischen Matrix gleich ihrer Zeilen- und Spaltenzahl, hat sie vollen Rang und ist regulär (invertierbar). ... Eine quadratische Matrix hat genau dann vollen Rang, wenn ihre Determinante von null verschieden ist bzw. keiner ihrer Eigenwerte null ist.

Kann der Rang einer Matrix 0 sein?

das heißt, wenn die Determinante 0 ist, sind die Zeilen/Spalten der Matrix nicht linear unabhängig, die Matrix hat also vollen Rang. rang A = 0 ist nur für die Nullmatrix (also eine Matrix voller Nullen) eine wahre Aussage!

Ist jede symmetrische Matrix Diagonalisierbar?

Eine symmetrische Matrix ist in der Mathematik eine quadratische Matrix, deren Einträge spiegelsymmetrisch bezüglich der Hauptdiagonale sind. ... So ist eine reelle symmetrische Matrix stets selbstadjungiert, sie besitzt nur reelle Eigenwerte und sie ist stets orthogonal diagonalisierbar.

Wann ist die Matrix invertierbar?

Nur quadratische Matrizen können eine Inverse besitzen. ... Eine Matrix A ist genau dann invertierbar, wenn gilt: det(A)≠0 det ( A ) ≠ 0 . Merke: Zu Matrizen, in denen Zeilen oder Spalten linear abhängig sind, deren Determinante also 0 beträgt, gibt es keine inverse Matrix.

Wie Diagonalisiert man eine Matrix?

Diagonalisierung einer Matrix
  1. Berechne das charakteristische Polynom der Matrix.
  2. Berechne die Nullstellen des charakteristischen Polynoms (= Eigenwerte). ...
  3. Bestimme die Eigenräume und ihre Dimensionen. ...
  4. Stelle die Diagonalmatrix auf - dabei sind die Einträge der Hauptdiagonale gleich der berechneten Eigenwerte der Matrix.

Ist eine einheitsmatrix Invertierbar?

Die inverse Matrix, Kehrmatrix oder kurz Inverse einer quadratischen Matrix ist in der Mathematik eine ebenfalls quadratische Matrix, die mit der Ausgangsmatrix multipliziert die Einheitsmatrix ergibt. Nicht jede quadratische Matrix besitzt eine Inverse; die invertierbaren Matrizen werden reguläre Matrizen genannt.

Wann ist eine Matrix normal?

gilt. Der Spektralsatz besagt, dass eine Matrix genau dann normal ist, wenn es eine unitäre Matrix gibt, so dass A = U D U ∗ , wobei eine Diagonalmatrix ist. Normale Matrizen haben also die Eigenschaft, dass sie unitär diagonalisierbar sind.

Was ist die geometrische Vielfachheit?

Eine andere Vielfachheit zu Eigenwerten ist die geometrische Vielfachheit. Sie gibt bei einem Eigenraum (zu einem bestimmten Eigenwert) die Anzahl der linear unabhängigen Eigenvektoren an.

Was ist ein Determinant?

Die Determinante einer Matrix ( oder ) gibt an, wie sich das Volumen einer aus Eckpunkten zusammengesetzten Geometrie skaliert, wenn diese durch die Matrix abgebildet wird. Ist die Determinante negativ, so ändert sich zusätzlich die Orientierung der Eckpunkte.

Sind eigenvektoren immer orthogonal zueinander?

Eigenvektoren zu verschiedenen Eigenwerten sind bei symmetrischen Matrizen stets orthogonal.

Wie viele verschiedene Eigenwerte kann eine Matrix haben?

Prinzipiell hat eine Matrix soviele Eigenwerte wie sie Zeilen/Spalten hat (Eigenwerte gibt es nur bei quadratischen Matrizen). Dabei kann es auch vorkommen, dass ein Eigenwert mehrfach auftritt.

Wann ist die transponierte gleich der inversen?

Eine orthogonale Matrix ist in der linearen Algebra eine quadratische, reelle Matrix, deren Zeilen- und Spaltenvektoren orthonormal bezüglich des Standardskalarprodukts sind. Damit ist die Inverse einer orthogonalen Matrix gleichzeitig ihre Transponierte.

Was bedeutet es wenn die Determinante gleich 0 ist?

Hat eine Matrix Determinante 0, so wissen wir aus dem vorigen Abschnitt, dass sie nicht vollen Rang hat. Dann ist sie auch nicht invertierbar! Ebenso gilt, hat eine Matrix Determinante ≠0, so ist sie invertierbar. Mit Hilfe der Determinante kann man also die Invertierbarkeit einer Matrix überprüfen.

Was bedeutet es wenn die Determinante 0 ist?

Bestimme die Determinante der Matrix. Ist die Determinante =0, so sind die Vektoren linear abhängig. Ist sie ≠0, so sind die Vektoren linear unabhängig.