Was macht die parameterform?

Gefragt von: Herr Dr. Raimund Brand B.Sc.  |  Letzte Aktualisierung: 8. Juni 2021
sternezahl: 5/5 (28 sternebewertungen)

Die Parameterform oder Punktrichtungsform ist in der Mathematik eine spezielle Form einer Geradengleichung oder Ebenengleichung. In der Parameterform wird eine Gerade durch einen Ortsvektor (Stützvektor) und einen Richtungsvektor dargestellt.

Wie kann eine Parameterform beschrieben werden?

Der Ortsvektor jedes Punktes X auf der Ebene kann also beschrieben werden durch \vec{x}= \vec{p} + r\cdot\vec{u} + s\cdot\vec{v}. r und s sind reelle Zahlen und heißen Parameter. Diese Darstellung heißt Parameterform einer Ebene (oder auch Parametergleichung oder Parameterdarstellung).

Was ist der Spannvektor?

heißen die Vektoren →u und →v Spannvektoren, da sie sozusagen vom Aufpunkt oder Stützvektor →p aus die Ebene in die jeweiligen Richtungen „aufspannen“. Wird eine Gerade in Parameterform angegeben, sagt man Richtungsvektor statt Spannvektor.

Was ist eine Ebenengleichung?

Eine Ebenengleichung ist in der Mathematik eine Gleichung, die eine Ebene im dreidimensionalen Raum beschreibt. Eine Ebene besteht dabei aus denjenigen Punkten in einem kartesischen Koordinatensystem, deren Koordinatenvektoren die Ebenengleichung erfüllen.

Wie kann man eine Ebene beschreiben?

Eine Ebene ist im mathematischen Sinne ein flaches, ebenes Objekt. Die Ebene selbst hat dabei nur zwei Dimensionen, kann sich aber natürlich im dreidimensionalen Raum befinden. Typische Ebenen sind dabei die xy-, die xz- und die yz-Ebene.

Parameterform einer Geraden, Ortsvektor, Richtungsvektor, Vektorgeometrie | Mathe by Daniel Jung

21 verwandte Fragen gefunden

Wie viele Punkte braucht man um eine Ebene zu definieren?

Im letzten Abschnitt haben wir eine Ebene durch einen Punkt und zwei Richtungsvektoren beschrieben. Da liegt die Vermutung doch nahe, dass man eine Ebene einfach durch drei Punkte beschreiben kann. Und dem ist auch so. In der Mathematik wird die folgende Form als "Vektorielle Drei-Punkte-Form einer Ebene" bezeichnet.

Was ist eine Ebene?

Die Ebene ist ein Grundbegriff der Geometrie. Allgemein handelt es sich um ein unbegrenzt ausgedehntes flaches zweidimensionales Objekt. Hierbei bedeutet unbegrenzt ausgedehnt und flach, dass zu je zwei Punkten auch eine durch diese verlaufende Gerade vollständig in der Ebene liegt.

Was ist eine Parameterfreie Gleichung?

Die Gleichung (2) heißt auch Koordinatengleichung oder parameterfreie Gleichung der Ebene, eine Gleichung der Form (4) heißt Normal(en)form und eine Gleichung der Form (5) hessesche Normal(en)form der Gleichung einer Ebene im Raum.

Wie bestimmt man eine Koordinatengleichung?

Man setzt als Koordinatengleichung an: ax1 + bx2 + cx3 = d und führt Punktproben mit den Punkten P, Q und R durch. Das sich dadurch ergebende lineare Gleichungssystem für die Variablen a, b und c mit dem Parameter d muss dann gelöst werden.

Was braucht man für eine Ebenengleichung?

Hat man z.B. drei Punkte als Vorgabe, dann nimmt man sich einfach einen der drei Punkte als Stützvektor und bildet zwei Vektoren zwischen den Punkten. Die beiden so gefundenen Vektoren verwendet man als Richtungsvektoren - und schon hat man eine Ebenengleichung.

Wie berechnet man die Spannvektoren?

Um eine Ebene aufzustellen verwendet man drei Punkte. Den ersten Punkt verwendet man als Stützvektor (auch Ortsvektor oder Aufpunkt genannt). Dieser wird vorne hingeschrieben. Die beiden Richtungsvektoren (auch Spannvektoren genannt) erhält man, in dem man jeweils zwei Punkte von einander abzieht.

Was ist ein Stützvektor richtungsvektor?

Bei der Darstellung von Geraden und Ebenen in Parameterform ist der Stützvektor derjenige Vektor, zu dem man ein skalares Vielfaches des Richtungsvektors bzw. der Spannvektoren addiert. Der Stützvektor ist der Ortsvektor des Aufpunkts.

Warum dürfen Spannvektoren nicht kollinear sein?

Spannvektoren sind Vektoren, deren Pfeile sich durch Parallelverschiebung in die Ebene abbilden lassen. (Spannvektoren dürfen nicht kollinear sein, das heißt, ihre Pfeile dürfen nicht parallel verlaufen.)

Wann braucht man die Parameterform?

Parameterform einer Geraden

Jeder Punkt einer Geraden wird in Abhängigkeit des Parameters λ beschrieben. gegeben ist und man drei verschiedene Punkte auf dieser Geraden sucht, setzt man einfach irgendwelche Werte für λ ein. Bei λ=0 handelt es sich um einen Spezialfall, denn der Aufpunkt liegt immer auf der Geraden!

Wie erstelle ich eine Parametergleichung auf?

Die Gleichung 2x + y - z = 3 soll als Parametergleichung angegeben werden.
...
Um eine Koordinatengleichung in eine Parametergleichung zu wandeln, führen wir die folgenden Schritte durch:
  1. Die Gleichung nach z auflösen.
  2. x = r und y = s setzen.
  3. Die Gleichungen notieren.
  4. Die Ebene in Parameterform notieren.

Was kann man aus der Koordinatenform ablesen?

Da alle Koordinaten in einer Gleichung vorkommen nennt man sie auch Koordinatenform einer Ebene. Sie beschreibt, wie x1-, x2- und x3-Koordinate eines Punktes auf der Ebene miteinander zusammenhängen.

Was ist die Normalvektorform?

Definition: Normalvektorform der Geradengleichung

Die Normalvektorform der Geradengleichung wird vom Orthogonalitätsprinzip der Vektoren ( und ) abgeleitet. Die Koordinaten des Normalvektors entsprechen daher den Koeffizienten von x und y in der Normalform.

Was ist die Normalform einer gerade?

Die Normalenform, Normalform oder Normalengleichung ist in der Mathematik eine spezielle Form einer Geradengleichung oder Ebenengleichung. In der Normalenform wird eine Gerade in der euklidischen Ebene oder eine Ebene im euklidischen Raum durch einen Stützvektor und einen Normalenvektor dargestellt.

Wie lautet die allgemeine Geradengleichung?

Die allgemeine Geradengleichung ist a x + b y + c = 0 (wobei ( a ; b ) ≠ ( 0 ; 0 ) ). Jede Gerade kann durch eine solche Gleichung beschrieben werden: Man wählt eine beliebige Gerade l und einen Punkt der Geraden M 0 sowie einen zur Geraden orthogonalen Vektor n → , der nicht der Nullvektor ist.