Wofür braucht man die parameterform?

Gefragt von: Florian Baier-Mann  |  Letzte Aktualisierung: 18. Dezember 2021
sternezahl: 4.5/5 (16 sternebewertungen)

Die Parameterform oder Punktrichtungsform ist in der Mathematik eine spezielle Form einer Geradengleichung oder Ebenengleichung. In der Parameterform wird eine Gerade durch einen Ortsvektor (Stützvektor) und einen Richtungsvektor dargestellt.

Was ist ein Stützvektor richtungsvektor?

Bei der Darstellung von Geraden und Ebenen in Parameterform ist der Stützvektor derjenige Vektor, zu dem man ein skalares Vielfaches des Richtungsvektors bzw. der Spannvektoren addiert. Der Stützvektor ist der Ortsvektor des Aufpunkts.

Wie kann eine Parameterform beschrieben werden?

Der Ortsvektor jedes Punktes X auf der Ebene kann also beschrieben werden durch \vec{x}= \vec{p} + r\cdot\vec{u} + s\cdot\vec{v}. r und s sind reelle Zahlen und heißen Parameter. Diese Darstellung heißt Parameterform einer Ebene (oder auch Parametergleichung oder Parameterdarstellung).

Was ist der Spannvektor?

Ein Stützvektor ist stets durch einen festen Punkt der Ebene bestimmt. Spannvektoren sind Vektoren, deren Pfeile sich durch Parallelverschiebung in die Ebene abbilden lassen. (Spannvektoren dürfen nicht kollinear sein, das heißt, ihre Pfeile dürfen nicht parallel verlaufen.)

Wann ist es keine Ebene?

Die Ebene ist nicht definiert, wenn diese beiden Richtungsvektoren kolinear sind. Also wenn sie entweder parallel oder entgegengesetzt parallel verlaufen. (Erklärung: Wenn die beiden Richtungsvektoren kolinear sind, dann beschreiben sie eigentlich mehrdeutig das gleiche, und die Ebene kann um diese "Drehachse" drehen).

Parameterform einer Geraden, Ortsvektor, Richtungsvektor, Vektorgeometrie | Mathe by Daniel Jung

32 verwandte Fragen gefunden

Wie kann man eine Ebene festlegen?

Man muss nur überprüfen, ob der Punkt auf der Geraden liegt. Liegt er nicht auf der Geraden, dann kann man eine eindeutige Ebene bilden, indem man den Richtungsvektor der Geraden nimmt, einen Vektor zwischen Punkt und Gerade zieht und den Punkt als Stützvektor der neuen Ebene verwendet.

Wann sind Vektoren in einer Ebene?

Vektoren nennt man komplanar, wenn sie in einer Ebene liegen. Drei Vektoren sind genau dann linear abhängig, wenn sie komplanar sind. Es wird festgelegt: Der Nullvektor ist zu jeder Ebene parallel. Zwei (oder mehrere) Vektoren sind genau dann komplanar, wenn sie bei gleichem Anfangspunkt in einer Ebene liegen.

Wie berechnet man Spannvektoren?

Um eine Ebene aufzustellen verwendet man drei Punkte. Den ersten Punkt verwendet man als Stützvektor (auch Ortsvektor oder Aufpunkt genannt). Dieser wird vorne hingeschrieben. Die beiden Richtungsvektoren (auch Spannvektoren genannt) erhält man, in dem man jeweils zwei Punkte von einander abzieht.

Was besagt die Parameterform?

In der Parameterform wird eine Gerade durch einen Ortsvektor (Stützvektor) und einen Richtungsvektor dargestellt. ... Jeder Punkt der Geraden wird dann in Abhängigkeit von einem Parameter beschrieben. Eine Ebene wird durch einen Stützvektor und zwei Richtungsvektoren dargestellt.

Wie bestimmt man den Stützvektor?

Für eine Gerade braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran).

Wie bestimmt man eine Koordinatengleichung?

Man setzt als Koordinatengleichung an: ax1 + bx2 + cx3 = d und führt Punktproben mit den Punkten P, Q und R durch. Das sich dadurch ergebende lineare Gleichungssystem für die Variablen a, b und c mit dem Parameter d muss dann gelöst werden.

Wie stellt man Geradengleichungen auf?

In der Analysis bestimmt man die Gleichung einer Geraden, also des Graphen einer linearen Funktion, indem man die jeweils gegebenen Größen in die allgemeine lineare Funktionsgleichung einsetzt. y0 und x0 müssen die Geradengleichung y = mx + b erfüllen, da P0 auf der Geraden liegt: 4 = 1,5 · 2 + b, also b = 1.

Was ist der aufpunkt?

Ein Aufpunkt ist ein bereits bekannter Punkt einer Gerade oder Ebene, mit dessen Hilfe man eine Gleichung für diese Gerade bzw. Ebene aufstellen kann.

Was ist der richtungsvektor bei einer Geraden?

ist der Vektor →v der Richtungsvektor, der (eventuell bis auf das Vorzeichen) in dieselbe räumliche Richtung zeigt wie die Gerade. Jeder Punkt →x auf der Geraden ist die Vektorsumme aus dem Aufpunkt oder Stützvektor →pund einem positiven oder negativen skalaren Vielfachen des Richtungsvektors.

Wie komme ich auf den richtungsvektor?

Richtungsvektoren können jeden Punkt als Startpunkt haben, während Ortsvektoren immer vom Koordinatenursprung ausgehen. Zum Beispiel lautet der Richtungsvektor zwischen A ( 2 | 4 ) und B ( 7 | 2 ) : g A B → = b → – a → = ( 7 − 2 2 – 4 ) = ( 5 − 2 ) .

Wie bekommt man den Richtungsvektor?

Es sind die Punkte P (Px l Py) und Q (Qx l Qy) gegeben. Der Verbindungsvektor ist jener Vektor, der in P seinen Schaft und in Q seine Spitze hat. Um ihn zu berechnen subtrahiert man vom Ortsvektor zu Q (Spitze) den Ortsvektor zu P (Schaft).

Was ist die Normalvektorform?

Definition: Normalvektorform der Geradengleichung

Die Normalvektorform der Geradengleichung wird vom Orthogonalitätsprinzip der Vektoren ( und ) abgeleitet. Die Koordinaten des Normalvektors entsprechen daher den Koeffizienten von x und y in der Normalform.

Was versteht man unter einem Vektor?

Im allgemeinen Sinn versteht man in der linearen Algebra unter einem Vektor (lat. vector „Träger, Fahrer“) ein Element eines Vektorraums, das heißt ein Objekt, das zu anderen Vektoren addiert und mit Zahlen, die als Skalare bezeichnet werden, multipliziert werden kann.

Was ist eine Parameterfreie Gleichung?

Die Gleichung (2) heißt auch Koordinatengleichung oder parameterfreie Gleichung der Ebene, eine Gleichung der Form (4) heißt Normal(en)form und eine Gleichung der Form (5) hessesche Normal(en)form der Gleichung einer Ebene im Raum.

Wie bestimmt man eine Parametergleichung?

Die Gleichung 2x + y - z = 3 soll als Parametergleichung angegeben werden.
...
Um eine Koordinatengleichung in eine Parametergleichung zu wandeln, führen wir die folgenden Schritte durch:
  1. Die Gleichung nach z auflösen.
  2. x = r und y = s setzen.
  3. Die Gleichungen notieren.
  4. Die Ebene in Parameterform notieren.

Wie berechnet man Spurpunkte?

Du kannst wie folgt vorgehen:
  1. Setze die entsprechende Koordinate des Schnittpunkts :
  2. Setze die Ortsvektoren der Schnittpunkte mit dem Funktionsterm der Geraden gleich und berechne .
  3. Setze. in die Geradengleichung ein. Der so berechnete Vektor, ist dann der Ortsvektor des jeweiligen Schnittpunkts.

Ist ein richtungsvektor ein Spannvektor?

heißen die Vektoren →u und →v Spannvektoren, da sie sozusagen vom Aufpunkt oder Stützvektor →p aus die Ebene in die jeweiligen Richtungen „aufspannen“. Wird eine Gerade in Parameterform angegeben, sagt man Richtungsvektor statt Spannvektor.

Wie prüft man ob Vektoren in einer Ebene liegen?

2. Allgemeines Vorgehen
  1. Man hat einen Punkt von dem man wissen will, ob er in der Ebene liegt.
  2. Man bildet den Ortsvektor zu diesem Punkt.
  3. Man ersetzt mit diesem Ortsvektor.
  4. Dann wird überprüft, ob die Gleichung "aufgeht", also ob man ein wahres Ergebnis erhält. Ist das Ergebnis wahr, dann liegt der Punkt in der Ebene.

Wann ist eine Ebene festgelegt?

Ebenen im Raum sind durch drei Punkte festgelegt (1), deren Ortsvektoren linear unabhängig sind bzw. die nicht auf einer gemeinsamen Geraden liegen (oder komplett identisch sind). ... Die Schnittpunkte einer Ebene mit den Koordinatenachsen nennt man Spurpunkte, je zwei Spurpunkte definieren eine Spurgerade.

Wie prüft man ob Vektoren linear abhängig sind?

Allgemeine Definition

Eine Menge von Vektoren ist linear abhängig, wenn man eine Linearkombination von ihnen bilden kann, die den Nullvektor ergibt und nicht trivial ist (trivial wäre, einfach von allen Vektoren das Nullfache zu nehmen). Geht das nicht, so sind sie linear unabhängig.