Wo ist f differenzierbar?

Gefragt von: Hans-Werner Hennig  |  Letzte Aktualisierung: 10. April 2021
sternezahl: 4.5/5 (35 sternebewertungen)

Anschaulich bedeutet das, dass der Graph von f an der Stelle x 0 \sf x_0 x0 eine eindeutige und nicht senkrechte Tangente besitzt. Der Grenzwert und damit die Ableitung gibt die Steigung dieser Tangente an. Ist f an jeder Stelle der Definitionsmenge differenzierbar, so nennt man f differenzierbar.

Auf welchem Bereich ist f differenzierbar?

Differenzierbarkeit einer Funktion

Eine Funktion ist differenzierbar, wenn sie an jeder Stelle x0 differenzierbar ist - heißt umgekehrt: Sobald es eine Stelle gibt, an der f(x) nicht differenzierbar ist, ist die gesamte Funktion nicht differenzierbar.

Ist f differenzierbar?

Die Funktion f heißt in I differenzierbar, wenn sie in jedem Punkt von I differenzierbar ist. Die Funktion y'=f'(x) die jedem x0∈Ι die Ableitung f'(x) zugeordnet, heißt (erste) Ableitung von f.

Welche Funktionen sind nicht differenzierbar?

Lexikon der Mathematik Nicht-Differenzierbarkeit. liegt bei einer Funktion f:D→R an einer inneren Stelle a∈D⊂R vor, wenn der Differenzenquotient Qf (a, x) für D∍x→a in R nicht konvergiert.

Wann ist eine Funktion total differenzierbar?

Die totale Differenzierbarkeit einer Funktion in einem Punkt bedeutet, dass diese sich dort lokal durch eine lineare Abbildung approximieren (annähern) lässt, während die partielle Differenzierbarkeit (in alle Richtungen) nur die lokale Approximierbarkeit durch Geraden in allen Koordinatenachsenrichtungen, nicht jedoch ...

Differenzierbarkeit an einer Stelle, Grenzwert existiert,Differentialquotient | Mathe by Daniel Jung

16 verwandte Fragen gefunden

Wann gilt der Satz von Schwarz?

Der Satz von Schwarz lautet folgendermaßen: Sei U⊆Rn eine offene Menge sowie f:U→R p-mal differenzierbar und sind alle p-ten Ableitungen in U zumindest noch stetig, so ist die Reihenfolge der Differentation in allen q-ten Ableitungen mit q≤p unerheblich. Wenn der Satz von Schwarz erfüllt ist, gilt also z.

Was ist eine totale Funktion?

Man unterscheidet zwischen totale Funktionen und partielle Funktionen. Sei eine Funktion gegeben mit f: M → N. Dann ist die Funktion total, wenn für jedes x ∈ M ein Bild von x, also f(x) ∈ N existiert. Die Funktion ist hingegen dann partiell, wenn sie für mindestens ein x ∈ M undefiniert ist.

Was ist ein differenzierbar?

Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Wir nennen dann diesen Grenzwert Ableitung an der Stelle x 0 \sf x_0 x0. ... Ist f an jeder Stelle der Definitionsmenge differenzierbar, so nennt man f differenzierbar.

Was ist mit x0 gemeint?

Normalerweise schreibt man f(x) um eine Funktion zu definieren. Wenn man dann die Funktion an einer ganz bestimmten Stelle untersuchen möchte, nennt man diese Stelle x0. An dem Grenzwert sieht man, dass x sich ändert und x0 in diesem Prozess ein spezieller Wert ist. Das soll die kleine 0 hervorheben.

Wann ist eine Funktion stetig aber nicht differenzierbar?

In der Mathematik bezeichnet man als Weierstraß-Funktion ein pathologisches Beispiel einer reellwertigen Funktion einer reellen Variablen. Diese Funktion hat die Eigenschaft, dass sie überall stetig, aber nirgends differenzierbar ist.

Ist jede Funktion differenzierbar?

Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.

Ist f x )= 0 differenzierbar?

Spricht man von einem absoluten/relativen Extremum, so meint man entweder ein abso- lutes/relatives Minimum oder Maximum. 10.13 Satz: Es sei S ⊂ R;f : S → R im Punkt x0 ∈ S0 differenzierbar. Hat die Funktion f im Punkt x0 ein relatives Extremum, dann gilt f (x0)=0.

Was ist stetig differenzierbar?

Eine Funktion ist stetig differenzierbar, wenn sie differenzierbar ist und ihre ->Ableitungsfunktion stetig ist. Beispiel: Die Funktion f mit f(x) = 2x³+5x²+10 besitzt die stetige Ableitung f' mit f'(x) = 6x²+10x. Alle ->ganzrationalen Funktionen sind stetig differenzierbar.

Sind alle polynome differenzierbar?

18.4 Differenzierbarkeit rationaler Funktionen (i) Jedes Polynom ist differenzierbar.

Ist eine wurzelfunktion differenzierbar?

Aber Du kannst nicht einfach sagen: Die Wurzelfunktion ist nicht differenzierbar. Es gibt nur Differenzierbarkeit in einem Punkt oder auf einer Menge. Wobei die Menge nur insofern was mit dem Definitionsbereich zu tun hat, als sie natuerlich Teilmenge desselben sein muss.

Was ist Surjektivität?

Eine surjektive Funktion ist eine mathematische Funktion, die jedes Element der Zielmenge mindestens einmal als Funktionswert annimmt. Das heißt, jedes Element der Zielmenge hat ein nichtleeres Urbild. Eine surjektive Funktion wird auch als Surjektion bezeichnet. Ist sie zudem auch injektiv, heißt sie bijektiv.

Wann ist eine Funktion Injektiv?

Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathemati- schen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funk- tionswert angenommen wird. ... Die Bildmenge kann also kleiner als die Zielmenge sein. Eine injektive Funktion wird auch als Injektion bezeichnet.