Matrix ist regulär?

Gefragt von: Johann Büttner  |  Letzte Aktualisierung: 15. Mai 2021
sternezahl: 4.5/5 (67 sternebewertungen)

Eine reguläre, invertierbare oder nichtsinguläre Matrix ist in der Mathematik eine quadratische Matrix, die eine Inverse besitzt. Reguläre Matrizen können auf mehrere äquivalente Weisen charakterisiert werden.

Wann ist eine Matrix regulär?

Definition Eine n-reihige, quadratische Matrix A heisst regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heisst sie singulär. Anmerkungen A is regulär, wenn det A = 0 ist, und singulär, wenn det A = 0 ist.

Ist die einheitsmatrix regulär?

Lexikon der Mathematik reguläre Matrix

Ist A regulär, so gibt es eine eindeutig bestimmte (n × n)-Matrix A1 über K, die Inverse von A, mit AA−1=A−1A=I, wobei I die (n × n)-Einheitsmatrix bezeichnet. Mit A und B ist auch AB regulär.

Wann ist ein gleichungssystem regulär?

Das lineare Gleichungssystem A\vec{x}=\vec{b} heißt regulär, falls die Koeffizientenmatrix A regulär ist. Das lineare Gleichungssystem A\vec{x}=\vec{b} heißt singulär, falls die Koeffizientenmatrix A singulär ist. Der erste Satz über reguläre Matrizen bezieht sich auf die durch sie gegebenen linearen Gleichungssysteme.

Wann ist eine Abbildung regulär?

regulärer Wert, ein Element der Bildmenge einer differenzierbaren Abbildung, dessen Urbild nur aus regulären Punkten besteht.

Was ist eine Reguläre Matrix? | Wie berechne ich invertierbare Matrizen? | lineare Vektoralgebra

42 verwandte Fragen gefunden

Was bedeutet das Wort regulär?

Wortbedeutung/Definition:

1) den Regeln, Vorschriften oder einer Ordnung entsprechend. 2) den gewöhnlichen Umständen entsprechend. 3) Mathematik: eine Regelmäßigkeit besitzend.

Wann ist eine Matrix eindeutig bestimmt?

Reguläre Matrizen können auf mehrere äquivalente Weisen charakterisiert werden. Zum Beispiel zeichnen sich reguläre Matrizen dadurch aus, dass die durch sie beschriebene lineare Abbildung bijektiv ist. Daher ist ein lineares Gleichungssystem mit einer regulären Koeffizientenmatrix stets eindeutig lösbar.

Wann ist die transponierte gleich der inversen?

Eine orthogonale Matrix wird allgemein häufig mit dem Buchstaben bezeichnet. Die Inverse einer ortogonalen Matrix ist gleichzeitig ihre Transponierte. Das Produkt einer orthogonalen Matrix mit ihrer Transponierten ergibt die Einheitsmatrix.

Wann ist die Matrix invertierbar?

Voraussetzung für die Existenz einer Inversen

Eine quadratische Matrix ist genau dann invertierbar, wenn gilt: det ( A ) ≠ 0 . Zu Matrizen, in denen Zeilen oder Spalten linear abhängig sind, deren Determinante also beträgt, gibt es keine inverse Matrix.

Was bedeutet es wenn die Determinante 0 ist?

Ist die Determinante =0, so sind die Vektoren linear abhängig. Ist sie ≠0, so sind die Vektoren linear unabhängig.

Wie sieht die einheitsmatrix aus?

Die Einheitsmatrix ist im Ring der quadratischen Matrizen das neutrale Element bezüglich der Matrizenmultiplikation. ... Sie ist symmetrisch, selbstinvers, idempotent und hat maximalen Rang. Die Einheitsmatrix ist die Darstellungsmatrix der Identitätsabbildung eines endlichdimensionalen Vektorraums.

Was ist die Kehrmatrix?

Die inverse Matrix, Kehrmatrix oder kurz Inverse einer quadratischen Matrix ist in der Mathematik eine ebenfalls quadratische Matrix, die mit der Ausgangsmatrix multipliziert die Einheitsmatrix ergibt. Nicht jede quadratische Matrix besitzt eine Inverse; die invertierbaren Matrizen werden reguläre Matrizen genannt.

Was ist eine Kofaktormatrix?

Kofaktormatrix Definition

Die Kofaktormatrix einer Matrix enthält alle deren Unterdeterminanten bzw. Minoren. ... Ist die Summe aus Zeilennummer und Spaltennummer für den jeweiligen Minor ungerade (z.B. für die Minoren M1,2 oder M2,1), wird ein Minus davor gesetzt.

Wann ist eine Matrix Diagonalisierbar?

Ist eine Matrix diagonalisierbar, so ist die geometrische Vielfachheit ihrer Eigenwerte gleich der jeweiligen algebraischen Vielfachheit. Das bedeutet, die Dimension der einzelnen Eigenräume stimmt jeweils mit der algebraischen Vielfachheit der entsprechenden Eigenwerte im charakteristischen Polynom der Matrix überein.

Wann muss eine Matrix quadratisch sein?

-Matrix (sprich: m-mal-n- oder m-Kreuz-n-Matrix). Stimmen Zeilen- und Spaltenanzahl überein, so spricht man von einer quadratischen Matrix.

Welche Werte kann die Determinante einer orthogonalen Matrix annehmen?

folgt. Damit kann die Determinante einer orthogonalen Matrix nur die Werte eins oder minus eins annehmen. Es gibt allerdings auch nicht-orthogonale Matrizen, deren Determinante plus oder minus eins ist, zum Beispiel unimodulare Matrizen. Orthogonale Matrizen, deren Determinante eins ist, entsprechen Drehungen.

Wann existiert eine orthonormalbasis?

Eine Orthonormalbasis (oft mit ONB abgekürzt) ist eine Basis eines Vektorraumes, wobei deren Basisvektoren orthonormal zueinander sind. Das heißt das Skalarprodukt zweier beliebiger Basisvektoren ergibt Null und jeder Basisvektor besitzt die Norm 1. ist eine Menge aus Vektoren dieses Vektorraums.

Wann sind zwei Vektoren orthogonal zueinander?

Zwei Vektoren sind somit zueinander orthogonal, wenn ihr Skalarprodukt gleich null ist. Der Nullvektor ist dabei zu allen Vektoren orthogonal.

Was sagt der Rang einer Matrix aus?

Der Rang entspricht der Anzahl der Zeilen der Zeilenstufenform, die keine Nullzeilen sind, also nicht vollständig aus 0 bestehen. Man bezeichnet diese Anzahl mit Rang(A).