Was ist reguläre matrix?
Gefragt von: Regine Naumann B.Eng. | Letzte Aktualisierung: 24. Januar 2021sternezahl: 4.7/5 (6 sternebewertungen)
Eine reguläre, invertierbare oder nichtsinguläre Matrix ist in der Mathematik eine quadratische Matrix, die eine Inverse besitzt. Reguläre Matrizen können auf mehrere äquivalente Weisen charakterisiert werden.
Wann ist eine Matrix regulär?
Definition Eine n-reihige, quadratische Matrix A heisst regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heisst sie singulär. Anmerkungen A is regulär, wenn det A = 0 ist, und singulär, wenn det A = 0 ist.
Was bedeutet es wenn eine Matrix invertierbar ist?
Eine Matrix A ist genau dann invertierbar, wenn gilt: det(A)≠0 det ( A ) ≠ 0 . Merke: Zu Matrizen, in denen Zeilen oder Spalten linear abhängig sind, deren Determinante also 0 beträgt, gibt es keine inverse Matrix.
Was ist eine singuläre Matrix?
Eine rechteckige Wertematrix (z. B. eine Matrix aus Quadratsummen und Kreuzprodukten) ist singulär, wenn die Elemente in einer Spalte (oder Zeile) der Matrix von Elementen einer oder mehrerer anderer Spalten (oder Zeilen) der Matrix linear abhängig sind.
Wie transponiert man eine Matrix?
Jede beliebige Matrix lässt sich transponieren. Was ist eine transponierte Matrix? Die transponierte Matrix AT erhält man durch Vertauschen der Zeilen und Spalten der Matrix A .
Was ist eine Reguläre Matrix? | Wie berechne ich invertierbare Matrizen? | lineare Vektoralgebra
34 verwandte Fragen gefunden
Was bringt das Transponieren einer Matrix?
In der linearen Algebra wird die transponierte Matrix unter anderem zur Charakterisierung spezieller Klassen von Matrizen eingesetzt. Die transponierte Matrix ist auch die Abbildungsmatrix der dualen Abbildung einer linearen Abbildung zwischen zwei endlichdimensionalen Vektorräumen bezüglich der jeweiligen Dualbasen.
Wie beschreibt man eine Matrix?
Matrizen bestehen aus m Zeilen und n Spalten, weshalb sie auch (m,n)-Matrizen genannt werden. Die Dimension einer einzelnen Matrix (Matrizen ist nur der Plural vom Begriff „Matrix“) mit m Zeilen und n Spalten ist m × n . Die Elemente einer Matrix bezeichnet man auch als Koeffizienten!
Was ist singulär?
Bedeutungen: [1] nur vereinzelt vorkommend; nur vereinzelt auftretend; einen Einzelfall oder Sonderfall darstellend. Herkunft: von französisch singulier →fr, zurückgehend auf lateinisch singularis →la „zum Einzelnen gehörig, vereinzelt, eigentümlich“, abgeleitet von singulus →la „einzeln, einer allein“
Was bedeutet es wenn die Determinante 0 ist?
Bei einer quadratischen (n×n)-Matrix bedeutet dies, er ist höchstens n. Es gilt, dass die Determinante einer Matrix genau dann 0 ist, wenn ihr Rang kleiner n ist.
Was genau ist eine Determinante?
Was gibt die Determinante an? Die Determinante einer Matrix ( oder ) gibt an, wie sich das Volumen einer aus Eckpunkten zusammengesetzten Geometrie skaliert, wenn diese durch die Matrix abgebildet wird. Ist die Determinante negativ, so ändert sich zusätzlich die Orientierung der Eckpunkte.
Wann ist eine Matrix Diagonalisierbar?
Ist eine Matrix diagonalisierbar, so ist die geometrische Vielfachheit ihrer Eigenwerte gleich der jeweiligen algebraischen Vielfachheit. Das bedeutet, die Dimension der einzelnen Eigenräume stimmt jeweils mit der algebraischen Vielfachheit der entsprechenden Eigenwerte im charakteristischen Polynom der Matrix überein.
Wann ist eine Matrix invertierbar Rang?
Ist der Rang einer quadratischen Matrix gleich ihrer Zeilen- und Spaltenzahl, hat sie vollen Rang und ist regulär (invertierbar). ... Eine quadratische Matrix hat genau dann vollen Rang, wenn ihre Determinante von null verschieden ist bzw. keiner ihrer Eigenwerte null ist.
Wann ist eine 2x2 Matrix invertierbar?
Umkehrformel für 2×2-Matrizen
Ist eine Matrix M=(abcd) M = ( a b c d ) invertierbar, so ist die Inverse gegeben durch M−1=1ad−bc(d−b−ca) M − 1 = 1 a d − b c ( d − b − c a ) .
Wann ist eine Matrix symmetrisch?
Eine symmetrische Matrix ist in der Mathematik eine quadratische Matrix, deren Einträge spiegelsymmetrisch bezüglich der Hauptdiagonale sind. Eine symmetrische Matrix stimmt demnach mit ihrer transponierten Matrix überein.
Wann ist eine Matrix Unitär?
Eine Matrix heißt unitär, wenn gilt: AAH=I (1) wobei gilt AH=ĀT (dh. dem komplex kojugierten Transponierten entspricht). Eine lineare Abbildung aus einem unitären Raum in sich selbst ist unitär, wenn ihre Matrix, bezüglich einer orthogonalen Basis, unitär ist.
Wann muss eine Matrix quadratisch sein?
-Matrix (sprich: m-mal-n- oder m-Kreuz-n-Matrix). Stimmen Zeilen- und Spaltenanzahl überein, so spricht man von einer quadratischen Matrix.
Für was braucht man eine Determinante?
Mit Hilfe von Determinanten kann man beispielsweise feststellen, ob ein lineares Gleichungssystem eindeutig lösbar ist, und kann die Lösung mit Hilfe der cramerschen Regel explizit angeben.
Wie berechnet man die Determinante aus?
Eigenschaften von Determinanten
det(α · A) = αn · det(A) det(AT) = det(A) wenn A eine Zeile oder eine Spalte bestehend aus 0 hat, dann ist det(A) = 0. wenn A zwei gleiche Zeilen oder Spalten hat, dann gilt det(A) = 0.
Was sind Determinanten der Gesundheit?
Heute ist allgemein anerkannt, dass die Gesundheit der Menschen stark durch ihre Lebensbedingungen sowie durch die Lebens- und Verhaltensweisen beeinflusst wird. Diese Einflüsse werden, im Gegensatz zu den biologisch-genetischen Faktoren, mit dem Begriff „Determinanten der Gesundheit“ benannt.
Was versteht man unter Singularität?
Als Singularität bezeichnet man in der Physik und Astronomie Orte, an denen die Gravitation so stark ist, dass die Krümmung der Raumzeit divergiert, umgangssprachlich also „unendlich“ ist. ... Physikalische Größen wie die Massendichte, zu deren Berechnung die Metrik benötigt wird, sind dort nicht definiert.