Warum ist die betragsfunktion nicht differenzierbar?

Gefragt von: Gitta Vogt B.A.  |  Letzte Aktualisierung: 2. Februar 2022
sternezahl: 4.6/5 (75 sternebewertungen)

Die Betragsfunktion ist zwar stetig, aber nicht allgemein differenzierbar, weil sie an der Stelle x0=0 nicht differenzierbar ist. Dies kann man mit dem Differenzenquotienten zeigen.

Wann ist eine Funktion nicht differenzierbar?

Lexikon der Mathematik Nicht-Differenzierbarkeit

liegt bei einer Funktion f:D→R an einer inneren Stelle a∈D⊂R vor, wenn der Differenzenquotient Qf (a, x) für D∍x→a in R nicht konvergiert. ... für x → 0 nicht konvergiert, ist f nicht differenzierbar an der Stelle 0 (Abbildung 1).

Wann ist eine Funktion stetig aber nicht differenzierbar?

In der Mathematik bezeichnet man als Weierstraß-Funktion ein pathologisches Beispiel einer reellwertigen Funktion einer reellen Variablen. Diese Funktion hat die Eigenschaft, dass sie überall stetig, aber nirgends differenzierbar ist. Sie ist nach ihrem Entdecker Karl Weierstraß benannt.

Kann eine unstetige Funktion differenzierbar sein?

Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.

Wann ist eine Funktion total differenzierbar?

Die totale Differenzierbarkeit einer Funktion in einem Punkt bedeutet, dass diese sich dort lokal durch eine lineare Abbildung approximieren (annähern) lässt, während die partielle Differenzierbarkeit (in alle Richtungen) nur die lokale Approximierbarkeit durch Geraden in allen Koordinatenachsenrichtungen, nicht jedoch ...

Betragsfunktion ist stetig, aber nicht differenzierbar in x=0 | Beweis (Analysis)

37 verwandte Fragen gefunden

Was bedeutet es wenn eine Funktion differenzierbar ist?

Differenzierbarkeit einer Funktion bedeutet, dass der Graph der Funktion an jeder Stelle eine eindeutig bestimmbare Tangente besitzt.

Wie findet man heraus ob eine Funktion differenzierbar ist?

Eine Funktion ist differenzierbar, wenn sie an jeder Stelle x0 differenzierbar ist - heißt umgekehrt: Sobald es eine Stelle gibt, an der f(x) nicht differenzierbar ist, ist die gesamte Funktion nicht differenzierbar.

Welche Funktionen sind stetig differenzierbar?

Eine Funktion ist stetig differenzierbar, wenn sie differenzierbar ist und ihre ->Ableitungsfunktion stetig ist. Beispiel: Die Funktion f mit f(x) = 2x³+5x²+10 besitzt die stetige Ableitung f' mit f'(x) = 6x²+10x. Alle ->ganzrationalen Funktionen sind stetig differenzierbar.

Wie oft ist die Funktion differenzierbar?

Eine glatte Funktion ist eine mathematische Funktion, die unendlich oft differenzierbar (insbesondere stetig) ist.

Wie erkenne ich eine stetige Funktion?

Eine Funktion ist stetig, wenn der Graph der Funktion im Definitionsbereich nahtlos gezeichnet werden kann. Anders ausgedrückt: Der Graph muss in jedem zusammenhängenden Teilintervall aus dem Definitionsbereich nahtlos gezeichnet werden können.

Wann ist eine Funktion glatt?

Eine glatte Funktion ist eine mathematische Funktion, die unendlich oft differenzierbar ist. Die Bezeichnung „glatt“ ist durch die Anschauung motiviert: Der Graph einer glatten Funktion hat keine „Ecken“, also Stellen, an denen sie nicht differenzierbar ist.

Wann ist eine Abbildung differenzierbar?

Differenzierbarkeit einer Abbildung.

Sei f W X ! W eine stetige Abbildung. als Richtungsableitung von f in x0 in Richtung v 2 V bezeichnet. ... W heißt differenzierbar, wenn sie in jedem Punkt x0 2 X differenzierbar ist.

Welche Funktionen sind integrierbar?

Riemann-Integrierbarkeit

Insbesondere ist über einem kompakten Intervall jede Regelfunktion, jede monoton wachsende oder monoton fallende Funktion und jede stetige Funktion Riemann-integrierbar.

Ist jede bijektive Funktion differenzierbar?

In der Mathematik, insbesondere in den Gebieten Analysis, Differentialgeometrie und Differentialtopologie, ist ein Diffeomorphismus eine bijektive, stetig differenzierbare Abbildung, deren Umkehrabbildung auch stetig differenzierbar ist.

Ist eine Ableitung immer stetig?

Mit anderen Worten: Eine Funktion f(x) ist an der Stelle x0 differenzierbar, wenn die Ableitung an dieser Stelle eindeutig ist, also genau eine Tangente existiert. ... Ist eine Funktion an der Stelle x0 differenzierbar, dann ist sie dort auch stetig.

Was berechnet man mit dem differentialquotient?

Einordnung
  1. Wir kennen bereits die Steigungsformel, m = y 1 − y 0 x 1 − x 0. ...
  2. Die Formel für die Steigung der Sekante können wir mithilfe eines Steigungsdreiecks herleiten. Für die Sekantensteigung gilt folglich: ...
  3. Gebräuchlicher ist für den Differenzenquotienten folgende Schreibweise: m = f ( x 1 ) − f ( x 0 ) x 1 − x 0.

Welcher Zusammenhang besteht zwischen Stetigkeit und Differenzierbarkeit kann man von dem einen auf das andere schließen?

Es zeigt sich, dass aus der Differenzierbarkeit einer Funktion ihre Stetigkeit folgt, umgekehrt muss jedoch eine stetige Funktion nicht differenzierbar sein.

Wie zeigt man dass ein Grenzwert existiert?

Der Grenzwert an einer endlichen Stelle ( x → x 0 ) verrät, wie sich die -Werte verhalten, wenn sich die -Werte der Stelle annähern. Der (beidseitige) Grenzwert existiert nur, wenn der linksseitige Grenzwert ( x → x 0 − ) und der rechtsseitige Grenzwert ( x → x 0 + ) übereinstimmen.

Wie bestimmt man die ableitungsfunktion?

Die erste Ableitung gibt für jede Funktion f(x) die Steigung (Anstieg) des Graphen an. Mit ihrer Hilfe kann man für jede Stelle x die Steigung des Graphen in dem Punkt berechnen. Man setzt also den x-Wert in die erste Ableitung ein und berechnet, wie groß der Anstieg der Funktion in dem entsprechenden Punkt ist.

Was ist die h Methode?

Die h-Methode ist eine andere Interpretation des Differentialquotienten. Anstatt x gegen x0 laufen zu lassen, lässt man diesmal die Differenz h=x−x0 gegen 0 laufen: f′(x0)=limh→0f(x0+h)−f(x0)h.

Was ist eine dreimal differenzierbare Funktion?

Den dreimal stetig differenzierbaren Kurven kommt eine besondere Bedeutung zu, da in der Differentialgeometrie Kurven im dreidimensionalen Raum ℝ3 im allgemeinen als dreimal stetig differenzierbar vorausgesetzt werden, um z. B. Begriffe wie Schmiegebene, begleitendes Dreibein, Krümmung und Windung definieren zu können.

Ist jede Funktion integrierbar?

Achtung: Jede stetige Funktion ist integrierbar, die Umkehrung gilt dagegen nicht: es gibt auf einem Intervall integrierbare Funktionen, die dort nicht (überall) stetig sind!

Wann ist eine Funktion nicht Riemann-integrierbar?

nicht Riemann-integrierbar. Jede Untersumme ist ≤ 0, und jede Obersumme ist ≥ 1. Daher gibt es viele Zahlen C, die größer-gleich jeder Untersumme und kleiner-gleich jeder Obersumme sind, im Widerspruch zur Definition. ... Letzteres kann also durch eine Folge von Riemann-Summen beliebig genau approximiert werden.

Ist jede beschränkte Funktion integrierbar?

Satz: Eine beschränkte stetige Funktion f : [a, b] → R ist integrierbar. ε b − a · (xj+1 − xj) = ε. Somit ist f nach dem Riemannschem Kriterium integrierbar.