Welche funktionen sind nicht differenzierbar?
Gefragt von: Theodor Steinbach | Letzte Aktualisierung: 18. August 2021sternezahl: 4.9/5 (43 sternebewertungen)
Beispiel: 1 Ein „klassisches“ Beispiel ist die Betragsfunktion f(x)=| x |, die an der Stelle x0=0 stetig (sie ist überall in ℝ stetig), aber nicht differenzierbar ist. Die Nicht-Differenzierbarkeit bei 0 ist anschaulich klar: Der Graph ändert im Punkt (0; 0) plötzlich seine Richtung, und es gibt keine Tangente.
Welche Funktionen sind differenzierbar?
Eine Funktion ist differenzierbar, wenn sie an jeder Stelle x0 differenzierbar ist - heißt umgekehrt: Sobald es eine Stelle gibt, an der f(x) nicht differenzierbar ist, ist die gesamte Funktion nicht differenzierbar.
Sind nicht stetige Funktionen differenzierbar?
Da jede differenzierbare Funktion stetig ist, ist umgekehrt jede unstetige Funktion (zum Beispiel eine Treppenfunktion oder die Dirichlet-Funktion) ein Beispiel für eine nicht differenzierbare Funktion. Es gibt aber auch Funktionen, die zwar stetig sind, aber nicht oder nicht überall differenzierbar.
Welche Funktionen sind nicht ableitbar?
Lexikon der Mathematik Nicht-Differenzierbarkeit. liegt bei einer Funktion f:D→R an einer inneren Stelle a∈D⊂R vor, wenn der Differenzenquotient Qf (a, x) für D∍x→a in R nicht konvergiert. ... Ist dabei f außer an der Stelle a differenzierbar, so hat f an der Stelle a einen ‚Knick'.
Wie überprüft man differenzierbarkeit?
Eine an der Stelle x 0 \sf x_0 x0 stetige Funktion f ist also differenzierbar, wenn beide Grenzwerte existieren und gilt: lim x → x 0 − f ′ ( x ) = lim x → x 0 + f ′ ( x ) .
Warum ist eine nicht stetige Funktion an der Stelle nicht differenzierbar? Mathe by Daniel Jung
37 verwandte Fragen gefunden
Wie überprüft man Stetigkeit?
Es gibt eine einfache Methode, um herauszufinden ob eine Funktion stetig ist: Zeichne den Graph der Funktion. Wenn dir das in einem Zug gelingt (also ohne den Stift abzusetzen), dann ist die Funktion stetig.
Wann ist eine Funktion stetig differenzierbar?
Eine Funktion ist stetig differenzierbar, wenn sie differenzierbar ist und ihre ->Ableitungsfunktion stetig ist. Beispiel: Die Funktion f mit f(x) = 2x³+5x²+10 besitzt die stetige Ableitung f' mit f'(x) = 6x²+10x.
Was ist eine dreimal differenzierbare Funktion?
Lexikon der Mathematik dreimal stetig differenzierbare Kurve
eine stetig differenzierbare Kurve α(t) derart, daß neben α′(t) auch die Ableitungen α″(t) und α‴(t) existieren und stetig sind.
Wann ist eine Funktion nicht definiert?
Gebrochenrationale Funktionen
Die -Werte, für die der Nenner gleich Null wird, müssen wir aus dem Definitionsbereich ausschließen. Dadurch entstehen sog. Definitionslücken – das sind Stellen, an denen die Funktion nicht definiert ist.
Wie oft ist die Funktion differenzierbar?
Eine glatte Funktion ist eine mathematische Funktion, die unendlich oft differenzierbar (insbesondere stetig) ist.
Welcher Zusammenhang besteht zwischen Differenzierbarkeit und Stetigkeit einer Funktion?
Es zeigt sich, dass aus der Differenzierbarkeit einer Funktion ihre Stetigkeit folgt, umgekehrt muss jedoch eine stetige Funktion nicht differenzierbar sein.
Haben stetige Funktionen einen Grenzwert?
Hierzu ein Beispiel:
f : [ 0 , ∞ ) ∈ R x , f ist in x 0 = 0 stetig. Hier existiert kein linksseitiger Grenzwert, da 0 den Definitionsbereich linksseitig abschließt. Daraus ergibt sich, dass Funktionen in isolierten Punkten automatisch stetig sind (auch über -Kriterium einfach zu zeigen).
Ist eine Funktion mit Knick stetig?
Anders ausgedrückt, an Stellen, an denen der Graph einer Funktion Spitzen oder Knicke besitzt, ist die Funktion nicht differenzierbar. Umgekehrt bedeutet das für die Stetigkeit: Ist eine Funktion an der Stelle x0 differenzierbar, dann ist sie dort auch stetig.
Was versteht man unter dem Grenzwert?
In der Mathematik bezeichnet der Limes oder Grenzwert einer Funktion an einer bestimmten Stelle denjenigen Wert, dem sich die Funktion in der Umgebung der betrachteten Stelle annähert.
Was sagt der mittelwertsatz aus?
Der Mittelwertsatz ist einer der zentralen Sätze der Differentialrechnung und besagt (grob gesprochen), dass die Steigung der Sekante zwischen zwei verschiedenen Punkten einer differenzierbaren Funktion irgendwo zwischen diesen beiden Punkten als Ableitung angenommen wird.
Was sagt der Differenzenquotient aus?
Der Differenzenquotient ist ein Begriff aus der Mathematik. Er beschreibt das Verhältnis der Veränderung einer Größe zu der Veränderung einer anderen, wobei die erste Größe von der zweiten abhängt. In der Analysis verwendet man Differenzenquotienten, um die Ableitung einer Funktion zu definieren.
Was ist die h Methode?
h-Methode Definition
Mit der h-Methode kann die 1. Ableitung einer Funktion (bzw. die Steigung eines Funktionsgraphen) berechnet werden. Nun wird die Differenz x - x0 gleich h gesetzt; dann kann man auch x als x0 + h schreiben.
Was bedeutet 2 mal differenzierbar?
Eine Funktion die differenzierbar ist, heisst einmal differenzierbar. ... Mit anderen Worten : Wenn Du die zweite Ableitung berechnen kannst, und die zweite Ableitung dazu noch stetig ist, so heisst die Funktion zweimal stetig differenzierbar.
Wann ist eine Abbildung differenzierbar?
Die Abbildung f W X ! W heißt differenzierbar, wenn sie in jedem Punkt x0 2 X differenzierbar ist.