Für was ist sinussatz?
Gefragt von: Swetlana Weise | Letzte Aktualisierung: 9. Dezember 2020sternezahl: 4.5/5 (2 sternebewertungen)
In der ebenen und sphärischen Trigonometrie stellt der Sinussatz eine Beziehung zwischen den Winkeln eines allgemeinen Dreiecks und den gegenüberliegenden Seiten her.
Was rechnet man mit dem Sinussatz?
Der Sinussatz besagt, dass das der Sinuswerte zweier eines Dreiecks dem Verhältnis der diesen Winkeln Seiten entspricht.
Für was braucht man den Sinussatz?
1 Antwort. Den Sinussatz und Kosinus satz benutzt man in nicht rechtwinkligen Dreiecken, wenn man 3 Angaben gegeben hat. Beim Kosinussatz braucht man 2 Seiten und den Eingeschlossenen winkel und kann damit die 3. Seite bestimmen oder man hat drei Seiten gegeben und bestimmt dazu einen Winkel.
Wann ist der Sinussatz anwendbar?
Der Sinussatz ist anwendbar wenn: zwei Winkel und eine Seite gegeben sind. zwei Seiten und ein Winkel gegeben sind, wobei der Winkel nicht von den zwei gegebenen Seiten eingeschlossen werden darf.
Kann man den Sinussatz auch in nicht rechtwinkligen Dreiecken anwenden?
In beliebigen Dreiecken hast du durch das Einzeichnen einer Höhe rechtwinklige Dreiecke hergestellt. Dann konntest du wieder mit Sinus, Kosinus und Tangens rechnen. Aber es gibt eine Regel, mit der du mithilfe des Sinus in jedem Dreieck die Seitenlängen und Winkel berechnen kannst! Das ist der Sinussatz.
Sinussatz - Trigonometrie | Lehrerschmidt - einfach erklärt!
38 verwandte Fragen gefunden
In welchen Dreiecken gilt der Sinussatz?
Der Sinussatz und der Kosinussatz sind zwei Erweiterungen der trigonometrischen Funktionen, die an sich ja nur in rechtwinkligen Dreiecken definiert sind, auf beliebige Dreiecke. Der "Trick" dabei ist in beiden Fällen, das Dreieck durch eine Höhe in zwei rechtwinklige Teildreiecke zu "teilen".
Wer hat den Sinussatz erfunden?
Zur gleichen Zeit wurde die Triangulierung und damit die praktische Trigonometrie in der Landvermessung durch Snellius (1580 - 1626) eingeführt. Die moderne sphärische Geometrie wurde durch Leonhard Euler (1707 - 1783) begründet. Er ist der Schöpfer der heutigen Darstellung und Schreibweise.
Warum ist der Sinus nicht größer als 1?
Weil der Sinus per Definitionem nicht größer als 1 sein kann. Sinus ist "Gegenkathete / Hypothenuse" und die Gegenkathete kann niemals größer als die Hypothenuse sein. ... Daraus folgt, dass die Hypotenuse immer größer ist wie die Gegenkathete.
Wie berechne ich einen Winkel mit dem Kosinussatz?
- γ = c o s − 1 ( − c 2 + a 2 + b 2 2 a b ) γ = cos^{-1}\left( \frac{-c^2 + a^2 + b^2}{2ab}\right) γ=cos−1(2ab−c2+a2+b2)
- α = c o s − 1 ( − a 2 + b 2 + c 2 2 b c ) α = cos^{-1}\left( \frac{-a^2 + b^2 + c^2}{2bc}\right) α=cos−1(2bc−a2+b2+c2)
Wie berechne ich einen Winkel im rechtwinkligen Dreieck?
Die Größe eines Winkels in einem rechtwinkligen Dreieck kann mit den Winkelfunktionen Sinus, Kosinus und Tangens berechnet werden. Dabei sind nicht die anderen Winkelgrößen angegeben, sondern die Längen der Seiten des Dreiecks. Die Hypotenuse ist immer die längste Seite eines rechtwinkligen Dreiecks.
Woher weiß man ob man Sinus oder Cosinus anwenden muss?
Bzgl eines Winkels mögen gewisse Seiten bekannt sein, die sich zu diesem Winkel als Gegenkathete und Hypotenuse verhalten. Ist dies der Fall und eines der genannten Unbekannt, so kann dies über den Sinus berechnet werden. Hat man nicht die Gegenkathete, sondern die Ankathete mit an Bord, dann nutzt man den Cosinus.
Wie funktioniert der Kosinussatz?
α und b liegen im linken Dreieck, a liegt im rechten, c ist die Summe jeweils einer Kathete beider Dreiecke. Die Idee ist nun, die beiden Dreiecke durch ihre gemeinsame Größe h rechnerisch zu "verbinden", um mit den gegebenen Größen zur Größe a zu gelangen. Außerdem gilt: p = b · cos(α). Somit gilt: q = c – b · cos(α).
Wann Sinus Kosinus Tangens?
Während beim Sinus die Gegenkathete durch die Hypotenuse geteilt wird, ist es beim Cosinus die Ankathete und die Hypotenuse, aus denen der Quotient gebildet wird. Beim Tangens wiederum wird die Gegenkathete durch die Ankathete dividiert.
Wann bekomme ich mit dem Sinussatz mehrere Lösungen?
2 Antworten
ist der Winkel gegenüber der kleineren Seite gegeben; das ist kein Kongruenzsatz; daher nicht eindeutig. trifft genau zu, was Ellejolka. Du hast zwei Seiten und den Winkel gegeben, der der kürzeren Seite gegenüberliegt.
Woher kommt der Sinus?
Herkunft des Namens. Die lateinische Bezeichnung Sinus „Bogen, Krümmung, Busen“ für diesen mathematischen Begriff wählte Gerhard von Cremona 1175 als Übersetzung der arabischen Bezeichnung gaib oder jiba (جيب) „Tasche, Kleiderfalte“, selbst entlehnt von Sanskrit jiva „Bogensehne“ indischer Mathematiker.
Was versteht man unter Trigonometrie?
Die Trigonometrie (griechisch τρίγωνον trígonon ‚Dreieck' und μέτρον métron ‚Maß') ist ein Teilgebiet der Geometrie und somit der Mathematik.
Wie berechnet man SWS?
Man geht von 14–15 Wochen pro Semester aus (Mittel aus ca. 16 Wochen im WS und 12–14 Wochen im SS, je nach Bundesland). Das bedeutet 14|15*0.75 = ca. 11 h Präsenzzeit pro SWS.
Wie rechnet man die lange Seite eines Dreiecks aus?
a/sin Alpha = b/sin Beta (Sinussatz). Weiter gilt für drei Seiten a,b,c und den Winkel Gamma gegenüber von Seite c: a²=b²+c²-2*b*c*cos Gamma (Kosinussatz).
Wie berechne ich die 3 Seite eines Dreiecks?
In rechtwinkligen Dreiecken gilt der Satz des Pythagoras: a²+b²=c². Das heißt also umgekehrt: c=Wurzel aus (a²+b²) oder b=Wurzel aus (c²-a²). Auf diese Weise kann man aus zwei gegebenen Seiten leicht die dritte berechnen.
Für welche Winkel zwischen 0 und 360 ist der Sinus?
Da die Längen der den Sinus- und Kosinuswerten entsprechenden Strecken gleiche Länge haben, gilt: sin α = sin (180°-α) = -sin (180°+α) = -sin(360°-α) und cos α = -cos(180°-α) = -cos(180°+α) = cos(360°-α) Da der Taschenrechner für positive Sinuswerte nur einen Winkel zwischen 0° und 90° angibt, muss man beim Berechnen ...