Was berechnet der sinussatz?

Gefragt von: Ramazan Raab  |  Letzte Aktualisierung: 18. Januar 2022
sternezahl: 4.1/5 (66 sternebewertungen)

Seitenlängen berechnen
Mit dem Sinussatz kannst du aus zwei Winkeln und der Länge einer der beiden gegenüberliegenden Seiten (sww) die Länge der anderen gegenüberliegenden Seite berechnen.

Wie berechnet man eine Seite mit dem Sinussatz?

Sinussatz: Seitenlänge berechnen
  1. Verwendet wird für diese Rechnung die Seite a mit einer Länge von 3 cm und einem Winkel (sin a) von 60°. ...
  2. a / sin a = c / sin y.
  3. c = a x sin y / sin a.
  4. c = 3 cm x sin 45° / sin 60°
  5. c = 2,45 cm.
  6. Auf diese Weise ermitteln Sie die Seitenlänge.

Wann gilt der Sinussatz?

Der Sinus-Satz gilt auch in stumpfwinkligen Dreiecken. Man kann ihn nutzen, um beispielsweise fehlende Stücke eines Dreiecks zu berechnen, wenn zwei Seitenlängen und ein gegenüber liegender Winkel oder eine Seitenlänge und zwei Winkel gegeben sind.

Für was Sinussatz?

Der Sinussatz verbindet gegenüberliegende Größen (Seiten und Winkel) im allgemeinen Dreieck. Sind zwei einander gegenüberliegende Größen gegeben, so kann zu einer dritten die gegenüberliegende Größe berechnet werden. Der Sinussatz gehört neben dem Kosinussatz zu den wichtigsten Sätzen der Trigonometrie.

Was berechnet man mit sin?

Mit dem Sinus kann man entweder die Länge der Hypotenuse oder die Länge der Gegenkathete oder die Größe des Winkels berechnen, je nachdem, welche der drei Größen gesucht ist. Die jeweils anderen beiden Größen müssen gegeben sein.

Sinussatz - Trigonometrie | Lehrerschmidt - einfach erklärt!

34 verwandte Fragen gefunden

Was berechnet man mit Cosinus?

Mit dem Kosinus kannst du rechnen, wenn du zwei der drei Größen, Winkel, Ankathete und Hypotenuse gegeben hast und die dritte suchst. Das Vorgehen ist also ähnlich wie beim Sinus, nur mit der Ankathete anstatt der Gegenkathete eines Winkels.

Wann nehme ich den Sinussatz und wann den Kosinussatz?

Der Vorteil des Kosinussatzes ist, dass die Werte immer eindeutig sind. Man erhält für die Winkelberechnung einen Wert von 0° bis 180° . Beim Sinussatz hingegen erhält man stets einen Winkel von 0° bis 90° und muss das Ergebnis rechnerisch bzw. mit der gegebenen Zeichnung überprüfen.

Wann wendet man den Kathetensatz an?

Der Kathetensatz besagt, dass in einem rechtwinkligen Dreieck das Quadrat über einer Kathete ( bzw. ) genauso groß ist wie das Rechteck, welches sich aus der Hypotenuse und dem anliegenden Hypotenusenabschnitt ( bzw. ) ergibt.

Welche Gleichungen ergeben sich wenn man den Sinussatz auf ein rechtwinkliges Dreieck anwendet?

Wegen |MB|=r und Winkel(MPB)=90° gilt im rechtwinkligen Dreieck MBP: r·sin(α) = |BP| und im Dreieck MPC analog r·sin(α) = |CP|. ... Allerdings gilt 2r=b/sin(β)=c/sin(γ) schon aufgrund des Sinussatzes (b/sin(β)=c/sin(γ)=a/sin(α)).

Wer hat den Sinussatz erfunden?

Aryabhata, Brahmaputra und Bhaskara führten die halben Sehnen als Funktion des halben Winkels ein und schufen so die Sinus-Trigonometrie. Arabische Mathematiker traten die Erbschaft der Griechen und Inder an und entwickelten Berechnungsmethoden.

Wie berechnet man eine Seite mit einem Winkel und einer Seite?

Die Seiten und Winkel kann man mit Hilfe von Sinus und Kosinus (Thema Klasse 10) berechnen: Es gilt nämlich für zwei Seiten a und b und die gegenüberliegenden Winkel Alpha und Beta: a/sin Alpha = b/sin Beta (Sinussatz).

Wie berechnet man Seitenlängen?

Ist der Flächeninhalt eines Quadrates bekannt, kann man sich die Seitenlänge sehr einfach berechnen. Dazu zieht man einfach die Quadratwurzel aus dem Flächeninhalt.

Wie berechne ich eine Seite im Dreieck?

In rechtwinkligen Dreiecken gilt der Satz des Pythagoras: a²+b²=c². Das heißt also umgekehrt: c=Wurzel aus (a²+b²) oder b=Wurzel aus (c²-a²). Auf diese Weise kann man aus zwei gegebenen Seiten leicht die dritte berechnen.

Wann gilt der Höhensatz?

Der Höhensatz besagt, dass in einem rechtwinkligen Dreieck das Quadrat über der Höhe ) genauso groß ist wie das Rechteck aus den beiden Hypotenusenabschnitten ( p ⋅ q ).

Wann darf man den Höhensatz anwenden?

Im Beweis des Kathetensatzes wird der Höhensatz benutzt. Das darfst du tun, weil du den Höhensatz ja gerade bewiesen hast. Es geht bei diesem Beweis darum, dass durch Umstellung des Satzes des Pythagoras der Kathetensatz a2=p⋅c entsteht. Das blaue Dreieck wird für den Pythagoras verwendet.

Für was braucht man den Kathetensatz?

Der Kathetensatz des Euklid gehört zur Satzgruppe des Pythagoras. Wie der Höhensatz und der Satz des Pythagoras, befasst sich der Kathetensatz mit Berechnungen in rechtwinkligen Dreiecken.

Wann kann ich den Kosinussatz anwenden?

Zur Hilfe kommt dir der Kosinussatz (auch Cosinussatz oder Cosinus Satz). Mit ihm kannst du in bestimmten Situationen fehlende Seiten und Winkel in einem Dreieck berechnen, in welchem es keinen rechten Winkel gibt.

Wann sind wann COS und TAN?

Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete (Kathete, die dem Winkel gegenüberliegt) zur Länge der Hypotenuse (Seite gegenüber dem rechten Winkel). Der Kosinus ist das Verhältnis der Länge der Ankathete (das ist jene Kathete, die einen Schenkel des Winkels bildet) zur Länge der Hypotenuse.

Wie berechnet man cos?

Man muss die Seite c durch zwei teilen. Dann haben wir zwei Längen von Seiten gegeben und können daraus mit dem Kosinus die Größe des Winkels \alpha_1,\alpha_2 berechnen. Damit können wir dann mit dem Kosinus die Gegenkathete von Winkel \alpha berechnen, welches unsere Höhe ist.

Was berechnet man mit winkelfunktionen?

Mit den Winkelfunktionen Sinus, Kosinus und Tangens kann auch die Länge von Seiten berechnen werden. Dazu müssen die Formeln / Gleichungen nach der Ankathete, Gegenkathete oder Hypotenuse umgestellt werden.

Was ist Cosinus Mathematik?

Der Cosinus ist eine Winkelfunktion. Winkelfunktionen sind definiert als das Verhältnis zweier Seiten im rechtwinkligen Dreieck. Ein Verhältnis entspricht in der Mathematik dem Quotienten zweier Größen.

Was berechnet man mit Tangens?

Mit dem Tangens rechnest du, wenn du zwei der drei Größen, Winkel, Ankathete des Winkels und Gegenkathete des Winkels gegeben hast und die dritte Größe suchst. Das Vorgehen ist also ähnlich wie beim Sinus und Kosinus.

Was ergibt Cosinus durch Sinus?

sin²(α) + cos²(α) = 1

Mit Hilfe dieser Beziehung kannst du ohne Taschenrechner zu jedem Winkel den Sinus aus dem Kosinus oder den Kosinus aus dem Sinus bestimmen.

Was ist ein Sinus oder Cosinus oder Tangens?

Mit den Winkelfunktionen Sinus, Cosinus und Tangens kannst du nicht nur Winkel berechnen. Wenn du die Formeln sin cos tan umstellst, kannst du auch die Längen der Dreiecksseiten berechnen. Gegeben ist ein rechtwinkliges Dreieck mit der Hypotenuse c=4cm und dem Winkel α=30°.